diff -r b0a46cf73aa4 -r 95b4fb2b5359 src/HOL/Decision_Procs/Approximation.thy --- a/src/HOL/Decision_Procs/Approximation.thy Wed Mar 27 10:54:47 2024 +0100 +++ b/src/HOL/Decision_Procs/Approximation.thy Wed Mar 27 15:16:09 2024 +0000 @@ -390,26 +390,6 @@ "DERIV_floatarith x (Num f) = Num 0" | "DERIV_floatarith x (Var n) = (if x = n then Num 1 else Num 0)" -lemma has_real_derivative_powr': - fixes f g :: "real \ real" - assumes "(f has_real_derivative f') (at x)" - assumes "(g has_real_derivative g') (at x)" - assumes "f x > 0" - defines "h \ \x. f x powr g x * (g' * ln (f x) + f' * g x / f x)" - shows "((\x. f x powr g x) has_real_derivative h x) (at x)" -proof (subst DERIV_cong_ev[OF refl _ refl]) - from assms have "isCont f x" - by (simp add: DERIV_continuous) - hence "f \x\ f x" by (simp add: continuous_at) - with \f x > 0\ have "eventually (\x. f x > 0) (nhds x)" - by (auto simp: tendsto_at_iff_tendsto_nhds dest: order_tendstoD) - thus "eventually (\x. f x powr g x = exp (g x * ln (f x))) (nhds x)" - by eventually_elim (simp add: powr_def) -next - from assms show "((\x. exp (g x * ln (f x))) has_real_derivative h x) (at x)" - by (auto intro!: derivative_eq_intros simp: h_def powr_def) -qed - lemma DERIV_floatarith: assumes "n < length vs" assumes isDERIV: "isDERIV n f (vs[n := x])"