diff -r ff6b0c1087f2 -r 95f1e700b712 src/ZF/ex/LList.thy --- a/src/ZF/ex/LList.thy Tue Mar 06 16:06:52 2012 +0000 +++ b/src/ZF/ex/LList.thy Tue Mar 06 16:46:27 2012 +0000 @@ -30,7 +30,7 @@ standard pairs work just as well. To use variant pairs, must change prefix a q/Q to the Sigma, Pair and converse rules.*) coinductive - domains "lleq(A)" <= "llist(A) * llist(A)" + domains "lleq(A)" \ "llist(A) * llist(A)" intros LNil: " \ lleq(A)" LCons: "[| a \ A; \ lleq(A) |] @@ -74,7 +74,7 @@ inductive_cases LConsE: "LCons(a,l) \ llist(A)" (*Proving freeness results*) -lemma LCons_iff: "LCons(a,l)=LCons(a',l') <-> a=a' & l=l'" +lemma LCons_iff: "LCons(a,l)=LCons(a',l') \ a=a' & l=l'" by auto lemma LNil_LCons_iff: "~ LNil=LCons(a,l)" @@ -107,7 +107,7 @@ declare Ord_in_Ord [elim!] lemma llist_quniv_lemma [rule_format]: - "Ord(i) ==> \l \ llist(quniv(A)). l Int Vset(i) \ univ(eclose(A))" + "Ord(i) ==> \l \ llist(quniv(A)). l \ Vset(i) \ univ(eclose(A))" apply (erule trans_induct) apply (rule ballI) apply (erule llist.cases) @@ -135,7 +135,7 @@ (*Lemma for proving finality. Unfold the lazy list; use induction hypothesis*) lemma lleq_Int_Vset_subset [rule_format]: - "Ord(i) ==> \l l'. \ lleq(A) --> l Int Vset(i) \ l'" + "Ord(i) ==> \l l'. \ lleq(A) \ l \ Vset(i) \ l'" apply (erule trans_induct) apply (intro allI impI) apply (erule lleq.cases) @@ -200,7 +200,7 @@ flip_LCons [simp] not_type [simp] -lemma bool_Int_subset_univ: "b \ bool ==> b Int X \ univ(eclose(A))" +lemma bool_Int_subset_univ: "b \ bool ==> b \ X \ univ(eclose(A))" by (fast intro: Int_lower1 [THEN subset_trans] elim!: boolE) declare not_type [intro!] @@ -209,7 +209,7 @@ (*Reasoning borrowed from lleq.ML; a similar proof works for all "productive" functions -- cf Coquand's "Infinite Objects in Type Theory".*) lemma flip_llist_quniv_lemma [rule_format]: - "Ord(i) ==> \l \ llist(bool). flip(l) Int Vset(i) \ univ(eclose(bool))" + "Ord(i) ==> \l \ llist(bool). flip(l) \ Vset(i) \ univ(eclose(bool))" apply (erule trans_induct) apply (rule ballI) apply (erule llist.cases, simp_all)