diff -r c2812ca1a455 -r 97b6daab0233 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Wed Aug 31 23:00:43 2022 +0200 +++ b/src/HOL/Deriv.thy Wed Aug 31 23:05:12 2022 +0200 @@ -811,7 +811,7 @@ lemma DERIV_def: "DERIV f x :> D \ (\h. (f (x + h) - f x) / h) \0\ D" unfolding field_has_derivative_at has_field_derivative_def has_field_derivative_iff .. -text \due to Christian Pardillo Laursen, replacing a proper epsilon-delta horror\ +text \due to Christian Pardillo Laursen, replacing a proper epsilon-delta horror\ lemma field_derivative_lim_unique: assumes f: "(f has_field_derivative df) (at z)" and s: "s \ 0" "\n. s n \ 0"