diff -r 3244957ca236 -r 97ff9276e12d src/HOL/Number_Theory/Gauss.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Number_Theory/Gauss.thy Mon Feb 24 23:17:55 2014 +0000 @@ -0,0 +1,393 @@ +(* Authors: Jeremy Avigad, David Gray, and Adam Kramer + +Ported by lcp but unfinished +*) + +header {* Gauss' Lemma *} + +theory Gauss +imports Residues +begin + +lemma cong_prime_prod_zero_nat: + fixes a::nat + shows "\[a * b = 0] (mod p); prime p\ \ [a = 0] (mod p) | [b = 0] (mod p)" + by (auto simp add: cong_altdef_nat) + +lemma cong_prime_prod_zero_int: + fixes a::int + shows "\[a * b = 0] (mod p); prime p\ \ [a = 0] (mod p) | [b = 0] (mod p)" + by (auto simp add: cong_altdef_int) + + +locale GAUSS = + fixes p :: "nat" + fixes a :: "int" + + assumes p_prime: "prime p" + assumes p_ge_2: "2 < p" + assumes p_a_relprime: "[a \ 0](mod p)" + assumes a_nonzero: "0 < a" +begin + +definition "A = {0::int <.. ((int p - 1) div 2)}" +definition "B = (\x. x * a) ` A" +definition "C = (\x. x mod p) ` B" +definition "D = C \ {.. (int p - 1) div 2}" +definition "E = C \ {(int p - 1) div 2 <..}" +definition "F = (\x. (int p - x)) ` E" + + +subsection {* Basic properties of p *} + +lemma odd_p: "odd p" +by (metis p_prime p_ge_2 prime_odd_nat) + +lemma p_minus_one_l: "(int p - 1) div 2 < p" +proof - + have "(p - 1) div 2 \ (p - 1) div 1" + by (metis div_by_1 div_le_dividend) + also have "\ = p - 1" by simp + finally show ?thesis using p_ge_2 by arith +qed + +lemma p_eq2: "int p = (2 * ((int p - 1) div 2)) + 1" + using odd_p p_ge_2 div_mult_self1_is_id [of 2 "p - 1"] + by auto presburger + +lemma p_odd_int: obtains z::int where "int p = 2*z+1" "0 E" +by (auto simp add: C_def D_def E_def) + +lemma A_card_eq: "card A = nat ((int p - 1) div 2)" + by (auto simp add: A_def) + +lemma inj_on_xa_A: "inj_on (\x. x * a) A" + using a_nonzero by (simp add: A_def inj_on_def) + +definition ResSet :: "int => int set => bool" + where "ResSet m X = (\y1 y2. (y1 \ X & y2 \ X & [y1 = y2] (mod m) --> y1 = y2))" + +lemma ResSet_image: + "\ 0 < m; ResSet m A; \x \ A. \y \ A. ([f x = f y](mod m) --> x = y) \ \ + ResSet m (f ` A)" + by (auto simp add: ResSet_def) + +lemma A_res: "ResSet p A" + using p_ge_2 + by (auto simp add: A_def ResSet_def intro!: cong_less_imp_eq_int) + +lemma B_res: "ResSet p B" +proof - + {fix x fix y + assume a: "[x * a = y * a] (mod p)" + assume b: "0 < x" + assume c: "x \ (int p - 1) div 2" + assume d: "0 < y" + assume e: "y \ (int p - 1) div 2" + from a p_a_relprime p_prime a_nonzero cong_mult_rcancel_int [of _ a x y] + have "[x = y](mod p)" + by (metis comm_monoid_mult_class.mult.left_neutral cong_dvd_modulus_int cong_mult_rcancel_int + cong_mult_self_int gcd_int.commute prime_imp_coprime_int) + with cong_less_imp_eq_int [of x y p] p_minus_one_l + order_le_less_trans [of x "(int p - 1) div 2" p] + order_le_less_trans [of y "(int p - 1) div 2" p] + have "x = y" + by (metis b c cong_less_imp_eq_int d e zero_less_imp_eq_int zero_zle_int) + } note xy = this + show ?thesis + apply (insert p_ge_2 p_a_relprime p_minus_one_l) + apply (auto simp add: B_def) + apply (rule ResSet_image) + apply (auto simp add: A_res) + apply (auto simp add: A_def xy) + done + qed + +lemma SR_B_inj: "inj_on (\x. x mod p) B" +proof - +{ fix x fix y + assume a: "x * a mod p = y * a mod p" + assume b: "0 < x" + assume c: "x \ (int p - 1) div 2" + assume d: "0 < y" + assume e: "y \ (int p - 1) div 2" + assume f: "x \ y" + from a have "[x * a = y * a](mod p)" + by (metis cong_int_def) + with p_a_relprime p_prime cong_mult_rcancel_int [of a p x y] + have "[x = y](mod p)" + by (metis cong_mult_self_int dvd_div_mult_self gcd_commute_int prime_imp_coprime_int) + with cong_less_imp_eq_int [of x y p] p_minus_one_l + order_le_less_trans [of x "(int p - 1) div 2" p] + order_le_less_trans [of y "(int p - 1) div 2" p] + have "x = y" + by (metis b c cong_less_imp_eq_int d e zero_less_imp_eq_int zero_zle_int) + then have False + by (simp add: f)} + then show ?thesis + by (auto simp add: B_def inj_on_def A_def) metis +qed + +lemma inj_on_pminusx_E: "inj_on (\x. p - x) E" + apply (auto simp add: E_def C_def B_def A_def) + apply (rule_tac g = "(op - (int p))" in inj_on_inverseI) + apply auto + done + +lemma nonzero_mod_p: + fixes x::int shows "\0 < x; x < int p\ \ [x \ 0](mod p)" +by (metis Nat_Transfer.transfer_nat_int_function_closures(9) cong_less_imp_eq_int + inf.semilattice_strict_iff_order int_less_0_conv le_numeral_extra(3) zero_less_imp_eq_int) + +lemma A_ncong_p: "x \ A \ [x \ 0](mod p)" + by (rule nonzero_mod_p) (auto simp add: A_def) + +lemma A_greater_zero: "x \ A \ 0 < x" + by (auto simp add: A_def) + +lemma B_ncong_p: "x \ B \ [x \ 0](mod p)" + by (auto simp add: B_def) (metis cong_prime_prod_zero_int A_ncong_p p_a_relprime p_prime) + +lemma B_greater_zero: "x \ B \ 0 < x" + using a_nonzero by (auto simp add: B_def mult_pos_pos A_greater_zero) + +lemma C_greater_zero: "y \ C \ 0 < y" +proof (auto simp add: C_def) + fix x :: int + assume a1: "x \ B" + have f2: "\x\<^sub>1. int x\<^sub>1 = 0 \ 0 < int x\<^sub>1" by linarith + have "x mod int p \ 0" using a1 B_ncong_p cong_int_def by simp + thus "0 < x mod int p" using a1 f2 + by (metis (no_types) B_greater_zero Divides.transfer_int_nat_functions(2) zero_less_imp_eq_int) +qed + +lemma F_subset: "F \ {x. 0 < x & x \ ((int p - 1) div 2)}" + apply (auto simp add: F_def E_def C_def) + apply (metis p_ge_2 Divides.pos_mod_bound less_diff_eq nat_int plus_int_code(2) zless_nat_conj) + apply (auto intro: p_odd_int) + done + +lemma D_subset: "D \ {x. 0 < x & x \ ((p - 1) div 2)}" + by (auto simp add: D_def C_greater_zero) + +lemma F_eq: "F = {x. \y \ A. ( x = p - ((y*a) mod p) & (int p - 1) div 2 < (y*a) mod p)}" + by (auto simp add: F_def E_def D_def C_def B_def A_def) + +lemma D_eq: "D = {x. \y \ A. ( x = (y*a) mod p & (y*a) mod p \ (int p - 1) div 2)}" + by (auto simp add: D_def C_def B_def A_def) + +lemma all_A_relprime: assumes "x \ A" shows "gcd x p = 1" + using p_prime A_ncong_p [OF assms] + by (simp add: cong_altdef_int) (metis gcd_int.commute prime_imp_coprime_int) + +lemma A_prod_relprime: "gcd (setprod id A) p = 1" + by (metis DEADID.map_id all_A_relprime setprod_coprime_int) + + +subsection {* Relationships Between Gauss Sets *} + +lemma StandardRes_inj_on_ResSet: "ResSet m X \ (inj_on (\b. b mod m) X)" + by (auto simp add: ResSet_def inj_on_def cong_int_def) + +lemma B_card_eq_A: "card B = card A" + using finite_A by (simp add: finite_A B_def inj_on_xa_A card_image) + +lemma B_card_eq: "card B = nat ((int p - 1) div 2)" + by (simp add: B_card_eq_A A_card_eq) + +lemma F_card_eq_E: "card F = card E" + using finite_E + by (simp add: F_def inj_on_pminusx_E card_image) + +lemma C_card_eq_B: "card C = card B" +proof - + have "inj_on (\x. x mod p) B" + by (metis SR_B_inj) + then show ?thesis + by (metis C_def card_image) +qed + +lemma D_E_disj: "D \ E = {}" + by (auto simp add: D_def E_def) + +lemma C_card_eq_D_plus_E: "card C = card D + card E" + by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E) + +lemma C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C" + by (metis C_eq D_E_disj finite_D finite_E inf_commute setprod_Un_disjoint sup_commute) + +lemma C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)" + apply (auto simp add: C_def) + apply (insert finite_B SR_B_inj) + apply (frule_tac f = "\x. x mod int p" in setprod_reindex_id [symmetric], auto) + apply (rule cong_setprod_int) + apply (auto simp add: cong_int_def) + done + +lemma F_Un_D_subset: "(F \ D) \ A" + apply (intro Un_least subset_trans [OF F_subset] subset_trans [OF D_subset]) + apply (auto simp add: A_def) + done + +lemma F_D_disj: "(F \ D) = {}" +proof (auto simp add: F_eq D_eq) + fix y::int and z::int + assume "p - (y*a) mod p = (z*a) mod p" + then have "[(y*a) mod p + (z*a) mod p = 0] (mod p)" + by (metis add_commute diff_eq_eq dvd_refl cong_int_def dvd_eq_mod_eq_0 mod_0) + moreover have "[y * a = (y*a) mod p] (mod p)" + by (metis cong_int_def mod_mod_trivial) + ultimately have "[a * (y + z) = 0] (mod p)" + by (metis cong_int_def mod_add_left_eq mod_add_right_eq mult_commute ring_class.ring_distribs(1)) + with p_prime a_nonzero p_a_relprime + have a: "[y + z = 0] (mod p)" + by (metis cong_prime_prod_zero_int) + assume b: "y \ A" and c: "z \ A" + with A_def have "0 < y + z" + by auto + moreover from b c p_eq2 A_def have "y + z < p" + by auto + ultimately show False + by (metis a nonzero_mod_p) +qed + +lemma F_Un_D_card: "card (F \ D) = nat ((p - 1) div 2)" +proof - + have "card (F \ D) = card E + card D" + by (auto simp add: finite_F finite_D F_D_disj card_Un_disjoint F_card_eq_E) + then have "card (F \ D) = card C" + by (simp add: C_card_eq_D_plus_E) + then show "card (F \ D) = nat ((p - 1) div 2)" + by (simp add: C_card_eq_B B_card_eq) +qed + +lemma F_Un_D_eq_A: "F \ D = A" + using finite_A F_Un_D_subset A_card_eq F_Un_D_card + by (auto simp add: card_seteq) + +lemma prod_D_F_eq_prod_A: "(setprod id D) * (setprod id F) = setprod id A" + by (metis F_D_disj F_Un_D_eq_A Int_commute Un_commute finite_D finite_F setprod_Un_disjoint) + +lemma prod_F_zcong: "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)" +proof - + have FE: "setprod id F = setprod (op - p) E" + apply (auto simp add: F_def) + apply (insert finite_E inj_on_pminusx_E) + apply (frule setprod_reindex_id, auto) + done + then have "\x \ E. [(p-x) mod p = - x](mod p)" + by (metis cong_int_def minus_mod_self1 mod_mod_trivial) + then have "[setprod ((\x. x mod p) o (op - p)) E = setprod (uminus) E](mod p)" + using finite_E p_ge_2 + cong_setprod_int [of E "(\x. x mod p) o (op - p)" uminus p] + by auto + then have two: "[setprod id F = setprod (uminus) E](mod p)" + by (metis FE cong_cong_mod_int cong_refl_int cong_setprod_int minus_mod_self1) + have "setprod uminus E = (-1) ^ (card E) * (setprod id E)" + using finite_E by (induct set: finite) auto + with two show ?thesis + by simp +qed + + +subsection {* Gauss' Lemma *} + +lemma aux: "setprod id A * -1 ^ card E * a ^ card A * -1 ^ card E = setprod id A * a ^ card A" +by (metis (no_types) minus_minus mult_commute mult_left_commute power_minus power_one) + +theorem pre_gauss_lemma: + "[a ^ nat((int p - 1) div 2) = (-1) ^ (card E)] (mod p)" +proof - + have "[setprod id A = setprod id F * setprod id D](mod p)" + by (auto simp add: prod_D_F_eq_prod_A mult_commute cong del:setprod_cong) + then have "[setprod id A = ((-1)^(card E) * setprod id E) * setprod id D] (mod p)" + apply (rule cong_trans_int) + apply (metis cong_scalar_int prod_F_zcong) + done + then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)" + by (metis C_prod_eq_D_times_E mult_commute mult_left_commute) + then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)" + by (rule cong_trans_int) (metis C_B_zcong_prod cong_scalar2_int) + then have "[setprod id A = ((-1)^(card E) * + (setprod id ((\x. x * a) ` A)))] (mod p)" + by (simp add: B_def) + then have "[setprod id A = ((-1)^(card E) * (setprod (\x. x * a) A))] + (mod p)" + by (simp add:finite_A inj_on_xa_A setprod_reindex_id[symmetric] cong del:setprod_cong) + moreover have "setprod (\x. x * a) A = + setprod (\x. a) A * setprod id A" + using finite_A by (induct set: finite) auto + ultimately have "[setprod id A = ((-1)^(card E) * (setprod (\x. a) A * + setprod id A))] (mod p)" + by simp + then have "[setprod id A = ((-1)^(card E) * a^(card A) * + setprod id A)](mod p)" + apply (rule cong_trans_int) + apply (simp add: cong_scalar2_int cong_scalar_int finite_A setprod_constant mult_assoc) + done + then have a: "[setprod id A * (-1)^(card E) = + ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)" + by (rule cong_scalar_int) + then have "[setprod id A * (-1)^(card E) = setprod id A * + (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)" + apply (rule cong_trans_int) + apply (simp add: a mult_commute mult_left_commute) + done + then have "[setprod id A * (-1)^(card E) = setprod id A * a^(card A)](mod p)" + apply (rule cong_trans_int) + apply (simp add: aux cong del:setprod_cong) + done + with A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)" + by (metis cong_mult_lcancel_int) + then show ?thesis + by (simp add: A_card_eq cong_sym_int) +qed + +(*NOT WORKING. Old_Number_Theory/Euler.thy needs to be translated, but it's +quite a mess and should better be completely redone. + +theorem gauss_lemma: "(Legendre a p) = (-1) ^ (card E)" +proof - + from Euler_Criterion p_prime p_ge_2 have + "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)" + by auto + moreover note pre_gauss_lemma + ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)" + by (rule cong_trans_int) + moreover from p_a_relprime have "(Legendre a p) = 1 | (Legendre a p) = (-1)" + by (auto simp add: Legendre_def) + moreover have "(-1::int) ^ (card E) = 1 | (-1::int) ^ (card E) = -1" + by (rule neg_one_power) + ultimately show ?thesis + by (auto simp add: p_ge_2 one_not_neg_one_mod_m zcong_sym) +qed +*) + +end + +end