diff -r ff7e6751a1a7 -r 9bbd5497befd src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Sat Nov 10 07:57:18 2018 +0000 +++ b/src/HOL/Finite_Set.thy Sat Nov 10 07:57:19 2018 +0000 @@ -256,7 +256,7 @@ "finite A \ (\a. a \ A \ finite (B a)) \ finite (\a\A. B a)" by (induct rule: finite_induct) simp_all -lemma finite_UN [simp]: "finite A \ finite (UNION A B) \ (\x\A. finite (B x))" +lemma finite_UN [simp]: "finite A \ finite (\(B ` A)) \ (\x\A. finite (B x))" by (blast intro: finite_subset) lemma finite_Inter [intro]: "\A\M. finite A \ finite (\M)" @@ -1254,7 +1254,7 @@ lemma inf_INF_fold_inf: assumes "finite A" - shows "inf B (INFIMUM A f) = fold (inf \ f) B A" (is "?inf = ?fold") + shows "inf B (\(f ` A)) = fold (inf \ f) B A" (is "?inf = ?fold") proof - interpret comp_fun_idem inf by (fact comp_fun_idem_inf) interpret comp_fun_idem "inf \ f" by (fact comp_comp_fun_idem) @@ -1265,7 +1265,7 @@ lemma sup_SUP_fold_sup: assumes "finite A" - shows "sup B (SUPREMUM A f) = fold (sup \ f) B A" (is "?sup = ?fold") + shows "sup B (\(f ` A)) = fold (sup \ f) B A" (is "?sup = ?fold") proof - interpret comp_fun_idem sup by (fact comp_fun_idem_sup) interpret comp_fun_idem "sup \ f" by (fact comp_comp_fun_idem) @@ -1274,10 +1274,10 @@ then show ?thesis .. qed -lemma INF_fold_inf: "finite A \ INFIMUM A f = fold (inf \ f) top A" +lemma INF_fold_inf: "finite A \ \(f ` A) = fold (inf \ f) top A" using inf_INF_fold_inf [of A top] by simp -lemma SUP_fold_sup: "finite A \ SUPREMUM A f = fold (sup \ f) bot A" +lemma SUP_fold_sup: "finite A \ \(f ` A) = fold (sup \ f) bot A" using sup_SUP_fold_sup [of A bot] by simp end