diff -r e116eb9e5e17 -r 9c80e62161a5 src/HOL/IMP/Abs_Int0.thy --- a/src/HOL/IMP/Abs_Int0.thy Mon May 13 22:49:00 2013 +0200 +++ b/src/HOL/IMP/Abs_Int0.thy Tue May 14 06:54:31 2013 +0200 @@ -208,9 +208,9 @@ lemma mono_gamma_c: "C1 \ C2 \ \\<^isub>c C1 \ \\<^isub>c C2" by (induction C1 C2 rule: less_eq_acom.induct) (simp_all add:mono_gamma_o) -text{* Soundness: *} +text{* Correctness: *} -lemma aval'_sound: "s : \\<^isub>s S \ aval a s : \(aval' a S)" +lemma aval'_correct: "s : \\<^isub>s S \ aval a s : \(aval' a S)" by (induct a) (auto simp: gamma_num' gamma_plus' \_fun_def) lemma in_gamma_update: "\ s : \\<^isub>s S; i : \ a \ \ s(x := i) : \\<^isub>s(S(x := a))" @@ -225,9 +225,9 @@ lemma step_step': "step (\\<^isub>o S) (\\<^isub>c C) \ \\<^isub>c (step' S C)" unfolding step_def step'_def by(rule gamma_Step_subcomm) - (auto simp: aval'_sound in_gamma_update asem_def split: option.splits) + (auto simp: aval'_correct in_gamma_update asem_def split: option.splits) -lemma AI_sound: "AI c = Some C \ CS c \ \\<^isub>c C" +lemma AI_correct: "AI c = Some C \ CS c \ \\<^isub>c C" proof(simp add: CS_def AI_def) assume 1: "pfp (step' \) (bot c) = Some C" have pfp': "step' \ C \ C" by(rule pfp_pfp[OF 1])