diff -r e116eb9e5e17 -r 9c80e62161a5 src/HOL/IMP/Abs_Int2.thy --- a/src/HOL/IMP/Abs_Int2.thy Mon May 13 22:49:00 2013 +0200 +++ b/src/HOL/IMP/Abs_Int2.thy Tue May 14 06:54:31 2013 +0200 @@ -48,12 +48,12 @@ locale Val_abs1 = Val_abs1_gamma where \ = \ for \ :: "'av::bounded_lattice \ val set" + fixes test_num' :: "val \ 'av \ bool" -and constrain_plus' :: "'av \ 'av \ 'av \ 'av * 'av" -and constrain_less' :: "bool \ 'av \ 'av \ 'av * 'av" +and inv_plus' :: "'av \ 'av \ 'av \ 'av * 'av" +and inv_less' :: "bool \ 'av \ 'av \ 'av * 'av" assumes test_num': "test_num' i a = (i : \ a)" -and constrain_plus': "constrain_plus' a a1 a2 = (a\<^isub>1',a\<^isub>2') \ +and inv_plus': "inv_plus' a a1 a2 = (a\<^isub>1',a\<^isub>2') \ i1 : \ a1 \ i2 : \ a2 \ i1+i2 : \ a \ i1 : \ a\<^isub>1' \ i2 : \ a\<^isub>2'" -and constrain_less': "constrain_less' (i11',a\<^isub>2') \ +and inv_less': "inv_less' (i11',a\<^isub>2') \ i1 : \ a1 \ i2 : \ a2 \ i1 : \ a\<^isub>1' \ i2 : \ a\<^isub>2'" @@ -69,19 +69,19 @@ "aval'' e None = \" | "aval'' e (Some S) = aval' e S" -lemma aval''_sound: "s : \\<^isub>o S \ aval a s : \(aval'' a S)" -by(cases S)(auto simp add: aval'_sound split: option.splits) +lemma aval''_correct: "s : \\<^isub>o S \ aval a s : \(aval'' a S)" +by(cases S)(auto simp add: aval'_correct split: option.splits) subsubsection "Backward analysis" -fun aconstrain :: "aexp \ 'av \ 'av st option \ 'av st option" where -"aconstrain (N n) a S = (if test_num' n a then S else None)" | -"aconstrain (V x) a S = (case S of None \ None | Some S \ +fun inv_aval'' :: "aexp \ 'av \ 'av st option \ 'av st option" where +"inv_aval'' (N n) a S = (if test_num' n a then S else None)" | +"inv_aval'' (V x) a S = (case S of None \ None | Some S \ let a' = fun S x \ a in if a' = \ then None else Some(update S x a'))" | -"aconstrain (Plus e1 e2) a S = - (let (a1,a2) = constrain_plus' a (aval'' e1 S) (aval'' e2 S) - in aconstrain e1 a1 (aconstrain e2 a2 S))" +"inv_aval'' (Plus e1 e2) a S = + (let (a1,a2) = inv_plus' a (aval'' e1 S) (aval'' e2 S) + in inv_aval'' e1 a1 (inv_aval'' e2 a2 S))" text{* The test for @{const bot} in the @{const V}-case is important: @{const bot} indicates that a variable has no possible values, i.e.\ that the current @@ -93,17 +93,17 @@ making the analysis less precise. *} -fun bconstrain :: "bexp \ bool \ 'av st option \ 'av st option" where -"bconstrain (Bc v) res S = (if v=res then S else None)" | -"bconstrain (Not b) res S = bconstrain b (\ res) S" | -"bconstrain (And b1 b2) res S = - (if res then bconstrain b1 True (bconstrain b2 True S) - else bconstrain b1 False S \ bconstrain b2 False S)" | -"bconstrain (Less e1 e2) res S = - (let (a1,a2) = constrain_less' res (aval'' e1 S) (aval'' e2 S) - in aconstrain e1 a1 (aconstrain e2 a2 S))" +fun inv_bval'' :: "bexp \ bool \ 'av st option \ 'av st option" where +"inv_bval'' (Bc v) res S = (if v=res then S else None)" | +"inv_bval'' (Not b) res S = inv_bval'' b (\ res) S" | +"inv_bval'' (And b1 b2) res S = + (if res then inv_bval'' b1 True (inv_bval'' b2 True S) + else inv_bval'' b1 False S \ inv_bval'' b2 False S)" | +"inv_bval'' (Less e1 e2) res S = + (let (a1,a2) = inv_less' res (aval'' e1 S) (aval'' e2 S) + in inv_aval'' e1 a1 (inv_aval'' e2 a2 S))" -lemma aconstrain_sound: "s : \\<^isub>o S \ aval e s : \ a \ s : \\<^isub>o (aconstrain e a S)" +lemma inv_aval''_correct: "s : \\<^isub>o S \ aval e s : \ a \ s : \\<^isub>o (inv_aval'' e a S)" proof(induction e arbitrary: a S) case N thus ?case by simp (metis test_num') next @@ -118,11 +118,11 @@ (metis mono_gamma emptyE in_gamma_inf gamma_bot subset_empty) next case (Plus e1 e2) thus ?case - using constrain_plus'[OF _ aval''_sound aval''_sound] + using inv_plus'[OF _ aval''_correct aval''_correct] by (auto split: prod.split) qed -lemma bconstrain_sound: "s : \\<^isub>o S \ bv = bval b s \ s : \\<^isub>o(bconstrain b bv S)" +lemma inv_bval''_correct: "s : \\<^isub>o S \ bv = bval b s \ s : \\<^isub>o(inv_bval'' b bv S)" proof(induction b arbitrary: S bv) case Bc thus ?case by simp next @@ -133,12 +133,12 @@ next case (Less e1 e2) thus ?case by(auto split: prod.split) - (metis (lifting) aconstrain_sound aval''_sound constrain_less') + (metis (lifting) inv_aval''_correct aval''_correct inv_less') qed definition "step' = Step (\x e S. case S of None \ None | Some S \ Some(update S x (aval' e S))) - (\b S. bconstrain b True S)" + (\b S. inv_bval'' b True S)" definition AI :: "com \ 'av st option acom option" where "AI c = pfp (step' \) (bot c)" @@ -146,25 +146,25 @@ lemma strip_step'[simp]: "strip(step' S c) = strip c" by(simp add: step'_def) -lemma top_on_aconstrain: "\ top_on_opt S X; vars e \ -X \ \ top_on_opt (aconstrain e a S) X" +lemma top_on_inv_aval'': "\ top_on_opt S X; vars e \ -X \ \ top_on_opt (inv_aval'' e a S) X" by(induction e arbitrary: a S) (auto simp: Let_def split: option.splits prod.split) -lemma top_on_bconstrain: "\top_on_opt S X; vars b \ -X\ \ top_on_opt (bconstrain b r S) X" -by(induction b arbitrary: r S) (auto simp: top_on_aconstrain top_on_sup split: prod.split) +lemma top_on_inv_bval'': "\top_on_opt S X; vars b \ -X\ \ top_on_opt (inv_bval'' b r S) X" +by(induction b arbitrary: r S) (auto simp: top_on_inv_aval'' top_on_sup split: prod.split) lemma top_on_step': "top_on_acom C (- vars C) \ top_on_acom (step' \ C) (- vars C)" unfolding step'_def by(rule top_on_Step) - (auto simp add: top_on_top top_on_bconstrain split: option.split) + (auto simp add: top_on_top top_on_inv_bval'' split: option.split) -subsubsection "Soundness" +subsubsection "Correctness" lemma step_step': "step (\\<^isub>o S) (\\<^isub>c C) \ \\<^isub>c (step' S C)" unfolding step_def step'_def by(rule gamma_Step_subcomm) - (auto simp: intro!: aval'_sound bconstrain_sound in_gamma_update split: option.splits) + (auto simp: intro!: aval'_correct inv_bval''_correct in_gamma_update split: option.splits) -lemma AI_sound: "AI c = Some C \ CS c \ \\<^isub>c C" +lemma AI_correct: "AI c = Some C \ CS c \ \\<^isub>c C" proof(simp add: CS_def AI_def) assume 1: "pfp (step' \) (bot c) = Some C" have pfp': "step' \ C \ C" by(rule pfp_pfp[OF 1]) @@ -186,10 +186,10 @@ locale Abs_Int1_mono = Abs_Int1 + assumes mono_plus': "a1 \ b1 \ a2 \ b2 \ plus' a1 a2 \ plus' b1 b2" -and mono_constrain_plus': "a1 \ b1 \ a2 \ b2 \ r \ r' \ - constrain_plus' r a1 a2 \ constrain_plus' r' b1 b2" -and mono_constrain_less': "a1 \ b1 \ a2 \ b2 \ - constrain_less' bv a1 a2 \ constrain_less' bv b1 b2" +and mono_inv_plus': "a1 \ b1 \ a2 \ b2 \ r \ r' \ + inv_plus' r a1 a2 \ inv_plus' r' b1 b2" +and mono_inv_less': "a1 \ b1 \ a2 \ b2 \ + inv_less' bv a1 a2 \ inv_less' bv b1 b2" begin lemma mono_aval': @@ -204,28 +204,28 @@ apply simp by (simp add: mono_aval') -lemma mono_aconstrain: "r1 \ r2 \ S1 \ S2 \ aconstrain e r1 S1 \ aconstrain e r2 S2" +lemma mono_inv_aval'': "r1 \ r2 \ S1 \ S2 \ inv_aval'' e r1 S1 \ inv_aval'' e r2 S2" apply(induction e arbitrary: r1 r2 S1 S2) apply(auto simp: test_num' Let_def inf_mono split: option.splits prod.splits) apply (metis mono_gamma subsetD) apply (metis le_bot inf_mono le_st_iff) apply (metis inf_mono mono_update le_st_iff) -apply(metis mono_aval'' mono_constrain_plus'[simplified less_eq_prod_def] fst_conv snd_conv) +apply(metis mono_aval'' mono_inv_plus'[simplified less_eq_prod_def] fst_conv snd_conv) done -lemma mono_bconstrain: "S1 \ S2 \ bconstrain b bv S1 \ bconstrain b bv S2" +lemma mono_inv_bval'': "S1 \ S2 \ inv_bval'' b bv S1 \ inv_bval'' b bv S2" apply(induction b arbitrary: bv S1 S2) apply(simp) apply(simp) apply simp apply(metis order_trans[OF _ sup_ge1] order_trans[OF _ sup_ge2]) apply (simp split: prod.splits) -apply(metis mono_aval'' mono_aconstrain mono_constrain_less'[simplified less_eq_prod_def] fst_conv snd_conv) +apply(metis mono_aval'' mono_inv_aval'' mono_inv_less'[simplified less_eq_prod_def] fst_conv snd_conv) done theorem mono_step': "S1 \ S2 \ C1 \ C2 \ step' S1 C1 \ step' S2 C2" unfolding step'_def -by(rule mono2_Step) (auto simp: mono_aval' mono_bconstrain split: option.split) +by(rule mono2_Step) (auto simp: mono_aval' mono_inv_bval'' split: option.split) lemma mono_step'_top: "C1 \ C2 \ step' \ C1 \ step' \ C2" by (metis mono_step' order_refl)