diff -r dafb3d343cd6 -r 9cde97e471df src/HOL/Binomial.thy --- a/src/HOL/Binomial.thy Tue Feb 06 18:08:43 2024 +0000 +++ b/src/HOL/Binomial.thy Wed Feb 07 22:39:42 2024 +0000 @@ -21,6 +21,15 @@ definition binomial :: "nat \ nat \ nat" (infixl "choose" 65) where "n choose k = card {K\Pow {0.. n" shows "m choose k \ n choose k" +proof - + have "{K. K \ {0.. card K = k} \ {K. K \ {0.. card K = k}" + using assms by auto + then show ?thesis + by (simp add: binomial_def card_mono) +qed + theorem n_subsets: assumes "finite A" shows "card {B. B \ A \ card B = k} = card A choose k"