diff -r 8f35633c4922 -r 9cf389429f6d src/HOL/MetisExamples/BT.thy --- a/src/HOL/MetisExamples/BT.thy Tue Oct 20 19:37:09 2009 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,243 +0,0 @@ -(* Title: HOL/MetisTest/BT.thy - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - -Testing the metis method -*) - -header {* Binary trees *} - -theory BT -imports Main -begin - - -datatype 'a bt = - Lf - | Br 'a "'a bt" "'a bt" - -consts - n_nodes :: "'a bt => nat" - n_leaves :: "'a bt => nat" - depth :: "'a bt => nat" - reflect :: "'a bt => 'a bt" - bt_map :: "('a => 'b) => ('a bt => 'b bt)" - preorder :: "'a bt => 'a list" - inorder :: "'a bt => 'a list" - postorder :: "'a bt => 'a list" - appnd :: "'a bt => 'a bt => 'a bt" - -primrec - "n_nodes Lf = 0" - "n_nodes (Br a t1 t2) = Suc (n_nodes t1 + n_nodes t2)" - -primrec - "n_leaves Lf = Suc 0" - "n_leaves (Br a t1 t2) = n_leaves t1 + n_leaves t2" - -primrec - "depth Lf = 0" - "depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))" - -primrec - "reflect Lf = Lf" - "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)" - -primrec - "bt_map f Lf = Lf" - "bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)" - -primrec - "preorder Lf = []" - "preorder (Br a t1 t2) = [a] @ (preorder t1) @ (preorder t2)" - -primrec - "inorder Lf = []" - "inorder (Br a t1 t2) = (inorder t1) @ [a] @ (inorder t2)" - -primrec - "postorder Lf = []" - "postorder (Br a t1 t2) = (postorder t1) @ (postorder t2) @ [a]" - -primrec - "appnd Lf t = t" - "appnd (Br a t1 t2) t = Br a (appnd t1 t) (appnd t2 t)" - - -text {* \medskip BT simplification *} - -declare [[ atp_problem_prefix = "BT__n_leaves_reflect" ]] -lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t" - apply (induct t) - apply (metis add_right_cancel n_leaves.simps(1) reflect.simps(1)) - apply (metis add_commute n_leaves.simps(2) reflect.simps(2)) - done - -declare [[ atp_problem_prefix = "BT__n_nodes_reflect" ]] -lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t" - apply (induct t) - apply (metis reflect.simps(1)) - apply (metis n_nodes.simps(2) nat_add_commute reflect.simps(2)) - done - -declare [[ atp_problem_prefix = "BT__depth_reflect" ]] -lemma depth_reflect: "depth (reflect t) = depth t" - apply (induct t) - apply (metis depth.simps(1) reflect.simps(1)) - apply (metis depth.simps(2) min_max.sup_commute reflect.simps(2)) - done - -text {* - The famous relationship between the numbers of leaves and nodes. -*} - -declare [[ atp_problem_prefix = "BT__n_leaves_nodes" ]] -lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)" - apply (induct t) - apply (metis n_leaves.simps(1) n_nodes.simps(1)) - apply auto - done - -declare [[ atp_problem_prefix = "BT__reflect_reflect_ident" ]] -lemma reflect_reflect_ident: "reflect (reflect t) = t" - apply (induct t) - apply (metis add_right_cancel reflect.simps(1)); - apply (metis reflect.simps(2)) - done - -declare [[ atp_problem_prefix = "BT__bt_map_ident" ]] -lemma bt_map_ident: "bt_map (%x. x) = (%y. y)" -apply (rule ext) -apply (induct_tac y) - apply (metis bt_map.simps(1)) -txt{*BUG involving flex-flex pairs*} -(* apply (metis bt_map.simps(2)) *) -apply auto -done - - -declare [[ atp_problem_prefix = "BT__bt_map_appnd" ]] -lemma bt_map_appnd: "bt_map f (appnd t u) = appnd (bt_map f t) (bt_map f u)" -apply (induct t) - apply (metis appnd.simps(1) bt_map.simps(1)) - apply (metis appnd.simps(2) bt_map.simps(2)) (*slow!!*) -done - - -declare [[ atp_problem_prefix = "BT__bt_map_compose" ]] -lemma bt_map_compose: "bt_map (f o g) t = bt_map f (bt_map g t)" -apply (induct t) - apply (metis bt_map.simps(1)) -txt{*Metis runs forever*} -(* apply (metis bt_map.simps(2) o_apply)*) -apply auto -done - - -declare [[ atp_problem_prefix = "BT__bt_map_reflect" ]] -lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)" - apply (induct t) - apply (metis add_right_cancel bt_map.simps(1) reflect.simps(1)) - apply (metis add_right_cancel bt_map.simps(2) reflect.simps(2)) - done - -declare [[ atp_problem_prefix = "BT__preorder_bt_map" ]] -lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)" - apply (induct t) - apply (metis bt_map.simps(1) map.simps(1) preorder.simps(1)) - apply simp - done - -declare [[ atp_problem_prefix = "BT__inorder_bt_map" ]] -lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)" - apply (induct t) - apply (metis bt_map.simps(1) inorder.simps(1) map.simps(1)) - apply simp - done - -declare [[ atp_problem_prefix = "BT__postorder_bt_map" ]] -lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)" - apply (induct t) - apply (metis bt_map.simps(1) map.simps(1) postorder.simps(1)) - apply simp - done - -declare [[ atp_problem_prefix = "BT__depth_bt_map" ]] -lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t" - apply (induct t) - apply (metis bt_map.simps(1) depth.simps(1)) - apply simp - done - -declare [[ atp_problem_prefix = "BT__n_leaves_bt_map" ]] -lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t" - apply (induct t) - apply (metis One_nat_def Suc_eq_plus1 bt_map.simps(1) less_add_one less_antisym linorder_neq_iff n_leaves.simps(1)) - apply (metis bt_map.simps(2) n_leaves.simps(2)) - done - - -declare [[ atp_problem_prefix = "BT__preorder_reflect" ]] -lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)" - apply (induct t) - apply (metis postorder.simps(1) preorder.simps(1) reflect.simps(1) rev_is_Nil_conv) - apply (metis append_Nil Cons_eq_append_conv postorder.simps(2) preorder.simps(2) reflect.simps(2) rev.simps(2) rev_append rev_rev_ident) - done - -declare [[ atp_problem_prefix = "BT__inorder_reflect" ]] -lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)" - apply (induct t) - apply (metis inorder.simps(1) reflect.simps(1) rev.simps(1)) - apply simp - done - -declare [[ atp_problem_prefix = "BT__postorder_reflect" ]] -lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)" - apply (induct t) - apply (metis postorder.simps(1) preorder.simps(1) reflect.simps(1) rev.simps(1)) - apply (metis Cons_eq_appendI postorder.simps(2) preorder.simps(2) reflect.simps(2) rev.simps(2) rev_append self_append_conv2) - done - -text {* - Analogues of the standard properties of the append function for lists. -*} - -declare [[ atp_problem_prefix = "BT__appnd_assoc" ]] -lemma appnd_assoc [simp]: - "appnd (appnd t1 t2) t3 = appnd t1 (appnd t2 t3)" - apply (induct t1) - apply (metis appnd.simps(1)) - apply (metis appnd.simps(2)) - done - -declare [[ atp_problem_prefix = "BT__appnd_Lf2" ]] -lemma appnd_Lf2 [simp]: "appnd t Lf = t" - apply (induct t) - apply (metis appnd.simps(1)) - apply (metis appnd.simps(2)) - done - -declare [[ atp_problem_prefix = "BT__depth_appnd" ]] - declare max_add_distrib_left [simp] -lemma depth_appnd [simp]: "depth (appnd t1 t2) = depth t1 + depth t2" - apply (induct t1) - apply (metis add_0 appnd.simps(1) depth.simps(1)) -apply (simp add: ); - done - -declare [[ atp_problem_prefix = "BT__n_leaves_appnd" ]] -lemma n_leaves_appnd [simp]: - "n_leaves (appnd t1 t2) = n_leaves t1 * n_leaves t2" - apply (induct t1) - apply (metis One_nat_def appnd.simps(1) less_irrefl less_linear n_leaves.simps(1) nat_mult_1) - apply (simp add: left_distrib) - done - -declare [[ atp_problem_prefix = "BT__bt_map_appnd" ]] -lemma (*bt_map_appnd:*) - "bt_map f (appnd t1 t2) = appnd (bt_map f t1) (bt_map f t2)" - apply (induct t1) - apply (metis appnd.simps(1) bt_map_appnd) - apply (metis bt_map_appnd) - done - -end