diff -r 65d18005d802 -r 9e888d60d3e5 doc-src/TutorialI/Recdef/document/Induction.tex --- a/doc-src/TutorialI/Recdef/document/Induction.tex Fri Jan 05 18:32:33 2001 +0100 +++ b/doc-src/TutorialI/Recdef/document/Induction.tex Fri Jan 05 18:32:57 2001 +0100 @@ -15,14 +15,15 @@ \textbf{recursion induction}. Roughly speaking, it requires you to prove for each \isacommand{recdef} equation that the property you are trying to establish holds for the left-hand side provided it holds -for all recursive calls on the right-hand side. Here is a simple example% +for all recursive calls on the right-hand side. Here is a simple example +involving the predefined \isa{map} functional on lists:% \end{isamarkuptext}% \isacommand{lemma}\ {\isachardoublequote}map\ f\ {\isacharparenleft}sep{\isacharparenleft}x{\isacharcomma}xs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ sep{\isacharparenleft}f\ x{\isacharcomma}\ map\ f\ xs{\isacharparenright}{\isachardoublequote}% \begin{isamarkuptxt}% \noindent -involving the predefined \isa{map} functional on lists: \isa{map\ f\ xs} +Note that \isa{map\ f\ xs} is the result of applying \isa{f} to all elements of \isa{xs}. We prove -this lemma by recursion induction w.r.t. \isa{sep}:% +this lemma by recursion induction over \isa{sep}:% \end{isamarkuptxt}% \isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ x\ xs\ rule{\isacharcolon}\ sep{\isachardot}induct{\isacharparenright}% \begin{isamarkuptxt}% @@ -48,7 +49,7 @@ In general, the format of invoking recursion induction is \begin{quote} -\isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac\ {\isacharparenleft}}$x@1 \dots x@n$ \isa{rule{\isacharcolon}} $f$\isa{{\isachardot}induct{\isacharparenright}} +\isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac\ }$x@1 \dots x@n$ \isa{rule{\isacharcolon}} $f$\isa{{\isachardot}induct{\isacharparenright}} \end{quote}\index{*induct_tac}% where $x@1~\dots~x@n$ is a list of free variables in the subgoal and $f$ the name of a function that takes an $n$-tuple. Usually the subgoal will