diff -r 66da6af2b0c9 -r 9edd495b6330 src/HOL/Hyperreal/HyperDef.thy --- a/src/HOL/Hyperreal/HyperDef.thy Tue Dec 12 07:13:06 2006 +0100 +++ b/src/HOL/Hyperreal/HyperDef.thy Tue Dec 12 07:46:40 2006 +0100 @@ -19,12 +19,14 @@ "hypreal_of_real == star_of" definition - omega :: hypreal where -- {*an infinite number @{text "= [<1,2,3,...>]"} *} - "omega = star_n (%n. real (Suc n))" + omega :: hypreal where + -- {*an infinite number @{text "= [<1,2,3,...>]"} *} + "omega = star_n (\n. real (Suc n))" definition - epsilon :: hypreal where -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *} - "epsilon = star_n (%n. inverse (real (Suc n)))" + epsilon :: hypreal where + -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *} + "epsilon = star_n (\n. inverse (real (Suc n)))" notation (xsymbols) omega ("\") and @@ -42,31 +44,31 @@ defs (overloaded) star_scaleR_def [transfer_unfold]: "scaleR r \ *f* (scaleR r)" -lemma Standard_scaleR [simp]: "x \ Standard \ r *# x \ Standard" +lemma Standard_scaleR [simp]: "x \ Standard \ scaleR r x \ Standard" by (simp add: star_scaleR_def) -lemma star_of_scaleR [simp]: "star_of (r *# x) = r *# star_of x" +lemma star_of_scaleR [simp]: "star_of (scaleR r x) = scaleR r (star_of x)" by transfer (rule refl) instance star :: (real_vector) real_vector proof fix a b :: real - show "\x y::'a star. a *# (x + y) = a *# x + a *# y" + show "\x y::'a star. scaleR a (x + y) = scaleR a x + scaleR a y" by transfer (rule scaleR_right_distrib) - show "\x::'a star. (a + b) *# x = a *# x + b *# x" + show "\x::'a star. scaleR (a + b) x = scaleR a x + scaleR b x" by transfer (rule scaleR_left_distrib) - show "\x::'a star. a *# b *# x = (a * b) *# x" + show "\x::'a star. scaleR a (scaleR b x) = scaleR (a * b) x" by transfer (rule scaleR_scaleR) - show "\x::'a star. 1 *# x = x" + show "\x::'a star. scaleR 1 x = x" by transfer (rule scaleR_one) qed instance star :: (real_algebra) real_algebra proof fix a :: real - show "\x y::'a star. a *# x * y = a *# (x * y)" + show "\x y::'a star. scaleR a x * y = scaleR a (x * y)" by transfer (rule mult_scaleR_left) - show "\x y::'a star. x * a *# y = a *# (x * y)" + show "\x y::'a star. x * scaleR a y = scaleR a (x * y)" by transfer (rule mult_scaleR_right) qed @@ -117,52 +119,47 @@ by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.filter]) lemma FreeUltrafilterNat_finite: "finite x ==> x \ FreeUltrafilterNat" -by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.finite]) +by (rule FreeUltrafilterNat.finite) lemma FreeUltrafilterNat_not_finite: "x \ FreeUltrafilterNat ==> ~ finite x" -thm FreeUltrafilterNat_mem -thm freeultrafilter.infinite -thm FreeUltrafilterNat_mem [THEN freeultrafilter.infinite] -by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.infinite]) +by (rule FreeUltrafilterNat.infinite) -lemma FreeUltrafilterNat_empty [simp]: "{} \ FreeUltrafilterNat" -by (rule FilterNat_mem [THEN filter.empty]) +lemma FreeUltrafilterNat_empty: "{} \ FreeUltrafilterNat" +by (rule FreeUltrafilterNat.empty) lemma FreeUltrafilterNat_Int: "[| X \ FreeUltrafilterNat; Y \ FreeUltrafilterNat |] ==> X Int Y \ FreeUltrafilterNat" -by (rule FilterNat_mem [THEN filter.Int]) +by (rule FreeUltrafilterNat.Int) lemma FreeUltrafilterNat_subset: "[| X \ FreeUltrafilterNat; X \ Y |] ==> Y \ FreeUltrafilterNat" -by (rule FilterNat_mem [THEN filter.subset]) +by (rule FreeUltrafilterNat.subset) lemma FreeUltrafilterNat_Compl: "X \ FreeUltrafilterNat ==> -X \ FreeUltrafilterNat" -apply (erule contrapos_pn) -apply (erule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff, THEN iffD2]) -done +by (rule FreeUltrafilterNat.memD) lemma FreeUltrafilterNat_Compl_mem: - "X\ FreeUltrafilterNat ==> -X \ FreeUltrafilterNat" -by (rule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff, THEN iffD1]) + "X \ FreeUltrafilterNat ==> -X \ FreeUltrafilterNat" +by (rule FreeUltrafilterNat.not_memD) lemma FreeUltrafilterNat_Compl_iff1: "(X \ FreeUltrafilterNat) = (-X \ FreeUltrafilterNat)" -by (rule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff]) +by (rule FreeUltrafilterNat.not_mem_iff) lemma FreeUltrafilterNat_Compl_iff2: "(X \ FreeUltrafilterNat) = (-X \ FreeUltrafilterNat)" by (auto simp add: FreeUltrafilterNat_Compl_iff1 [symmetric]) lemma cofinite_mem_FreeUltrafilterNat: "finite (-X) ==> X \ FreeUltrafilterNat" -apply (drule FreeUltrafilterNat_finite) -apply (simp add: FreeUltrafilterNat_Compl_iff2 [symmetric]) +apply (drule FreeUltrafilterNat.finite) +apply (simp add: FreeUltrafilterNat.not_mem_iff) done -lemma FreeUltrafilterNat_UNIV [iff]: "UNIV \ FreeUltrafilterNat" -by (rule FilterNat_mem [THEN filter.UNIV]) +lemma FreeUltrafilterNat_UNIV: "UNIV \ FreeUltrafilterNat" +by (rule FreeUltrafilterNat.UNIV) lemma FreeUltrafilterNat_Nat_set_refl [intro]: "{n. P(n) = P(n)} \ FreeUltrafilterNat" @@ -202,7 +199,7 @@ subsection{*Properties of @{term starrel}*} text{*Proving that @{term starrel} is an equivalence relation*} - +(* lemma starrel_iff: "((X,Y) \ starrel) = ({n. X n = Y n} \ FreeUltrafilterNat)" by (rule StarDef.starrel_iff) @@ -219,21 +216,11 @@ lemma equiv_starrel: "equiv UNIV starrel" by (rule StarDef.equiv_starrel) -(* (starrel `` {x} = starrel `` {y}) = ((x,y) \ starrel) *) lemmas equiv_starrel_iff = eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I, simp] -lemma starrel_in_hypreal [simp]: "starrel``{x}:star" -by (simp add: star_def starrel_def quotient_def, blast) - -declare Abs_star_inject [simp] Abs_star_inverse [simp] -declare equiv_starrel [THEN eq_equiv_class_iff, simp] - lemmas eq_starrelD = eq_equiv_class [OF _ equiv_starrel] -lemma lemma_starrel_refl [simp]: "x \ starrel `` {x}" -by (simp add: starrel_def) - lemma hypreal_empty_not_mem [simp]: "{} \ star" apply (simp add: star_def) apply (auto elim!: quotientE equalityCE) @@ -241,6 +228,16 @@ lemma Rep_hypreal_nonempty [simp]: "Rep_star x \ {}" by (insert Rep_star [of x], auto) +*) + +lemma lemma_starrel_refl [simp]: "x \ starrel `` {x}" +by (simp add: starrel_def) + +lemma starrel_in_hypreal [simp]: "starrel``{x}:star" +by (simp add: star_def starrel_def quotient_def, blast) + +declare Abs_star_inject [simp] Abs_star_inverse [simp] +declare equiv_starrel [THEN eq_equiv_class_iff, simp] subsection{*@{term hypreal_of_real}: the Injection from @{typ real} to @{typ hypreal}*}