diff -r 15ce93dfe6da -r 9f492f5b0cec src/HOL/Matrix_LP/ComputeFloat.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Matrix_LP/ComputeFloat.thy Sat Mar 17 12:52:40 2012 +0100 @@ -0,0 +1,309 @@ +(* Title: HOL/Matrix/ComputeFloat.thy + Author: Steven Obua +*) + +header {* Floating Point Representation of the Reals *} + +theory ComputeFloat +imports Complex_Main "~~/src/HOL/Library/Lattice_Algebras" +uses "~~/src/Tools/float.ML" ("~~/src/HOL/Tools/float_arith.ML") +begin + +definition int_of_real :: "real \ int" + where "int_of_real x = (SOME y. real y = x)" + +definition real_is_int :: "real \ bool" + where "real_is_int x = (EX (u::int). x = real u)" + +lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))" + by (auto simp add: real_is_int_def int_of_real_def) + +lemma real_is_int_real[simp]: "real_is_int (real (x::int))" +by (auto simp add: real_is_int_def int_of_real_def) + +lemma int_of_real_real[simp]: "int_of_real (real x) = x" +by (simp add: int_of_real_def) + +lemma real_int_of_real[simp]: "real_is_int x \ real (int_of_real x) = x" +by (auto simp add: int_of_real_def real_is_int_def) + +lemma real_is_int_add_int_of_real: "real_is_int a \ real_is_int b \ (int_of_real (a+b)) = (int_of_real a) + (int_of_real b)" +by (auto simp add: int_of_real_def real_is_int_def) + +lemma real_is_int_add[simp]: "real_is_int a \ real_is_int b \ real_is_int (a+b)" +apply (subst real_is_int_def2) +apply (simp add: real_is_int_add_int_of_real real_int_of_real) +done + +lemma int_of_real_sub: "real_is_int a \ real_is_int b \ (int_of_real (a-b)) = (int_of_real a) - (int_of_real b)" +by (auto simp add: int_of_real_def real_is_int_def) + +lemma real_is_int_sub[simp]: "real_is_int a \ real_is_int b \ real_is_int (a-b)" +apply (subst real_is_int_def2) +apply (simp add: int_of_real_sub real_int_of_real) +done + +lemma real_is_int_rep: "real_is_int x \ ?! (a::int). real a = x" +by (auto simp add: real_is_int_def) + +lemma int_of_real_mult: + assumes "real_is_int a" "real_is_int b" + shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)" + using assms + by (auto simp add: real_is_int_def real_of_int_mult[symmetric] + simp del: real_of_int_mult) + +lemma real_is_int_mult[simp]: "real_is_int a \ real_is_int b \ real_is_int (a*b)" +apply (subst real_is_int_def2) +apply (simp add: int_of_real_mult) +done + +lemma real_is_int_0[simp]: "real_is_int (0::real)" +by (simp add: real_is_int_def int_of_real_def) + +lemma real_is_int_1[simp]: "real_is_int (1::real)" +proof - + have "real_is_int (1::real) = real_is_int(real (1::int))" by auto + also have "\ = True" by (simp only: real_is_int_real) + ultimately show ?thesis by auto +qed + +lemma real_is_int_n1: "real_is_int (-1::real)" +proof - + have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto + also have "\ = True" by (simp only: real_is_int_real) + ultimately show ?thesis by auto +qed + +lemma real_is_int_number_of[simp]: "real_is_int ((number_of \ int \ real) x)" + by (auto simp: real_is_int_def intro!: exI[of _ "number_of x"]) + +lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)" +by (simp add: int_of_real_def) + +lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)" +proof - + have 1: "(1::real) = real (1::int)" by auto + show ?thesis by (simp only: 1 int_of_real_real) +qed + +lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b" + unfolding int_of_real_def + by (intro some_equality) + (auto simp add: real_of_int_inject[symmetric] simp del: real_of_int_inject) + +lemma int_div_zdiv: "int (a div b) = (int a) div (int b)" +by (rule zdiv_int) + +lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)" +by (rule zmod_int) + +lemma abs_div_2_less: "a \ 0 \ a \ -1 \ abs((a::int) div 2) < abs a" +by arith + +lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1" + by auto + +lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)" + by simp + +lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)" + by simp + +lemma mult_left_one: "1 * a = (a::'a::semiring_1)" + by simp + +lemma mult_right_one: "a * 1 = (a::'a::semiring_1)" + by simp + +lemma int_pow_0: "(a::int)^(Numeral0) = 1" + by simp + +lemma int_pow_1: "(a::int)^(Numeral1) = a" + by simp + +lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0" + by simp + +lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1" + by simp + +lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0" + by simp + +lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1" + by simp + +lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1" + by simp + +lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1" +proof - + have 1:"((-1)::nat) = 0" + by simp + show ?thesis by (simp add: 1) +qed + +lemma fst_cong: "a=a' \ fst (a,b) = fst (a',b)" + by simp + +lemma snd_cong: "b=b' \ snd (a,b) = snd (a,b')" + by simp + +lemma lift_bool: "x \ x=True" + by simp + +lemma nlift_bool: "~x \ x=False" + by simp + +lemma not_false_eq_true: "(~ False) = True" by simp + +lemma not_true_eq_false: "(~ True) = False" by simp + +lemmas binarith = + normalize_bin_simps + pred_bin_simps succ_bin_simps + add_bin_simps minus_bin_simps mult_bin_simps + +lemma int_eq_number_of_eq: + "(((number_of v)::int)=(number_of w)) = iszero ((number_of (v + uminus w))::int)" + by (rule eq_number_of_eq) + +lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)" + by (simp only: iszero_number_of_Pls) + +lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))" + by simp + +lemma int_iszero_number_of_Bit0: "iszero ((number_of (Int.Bit0 w))::int) = iszero ((number_of w)::int)" + by simp + +lemma int_iszero_number_of_Bit1: "\ iszero ((number_of (Int.Bit1 w))::int)" + by simp + +lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (x + (uminus y)))::int)" + unfolding neg_def number_of_is_id by simp + +lemma int_not_neg_number_of_Pls: "\ (neg (Numeral0::int))" + by simp + +lemma int_neg_number_of_Min: "neg (-1::int)" + by simp + +lemma int_neg_number_of_Bit0: "neg ((number_of (Int.Bit0 w))::int) = neg ((number_of w)::int)" + by simp + +lemma int_neg_number_of_Bit1: "neg ((number_of (Int.Bit1 w))::int) = neg ((number_of w)::int)" + by simp + +lemma int_le_number_of_eq: "(((number_of x)::int) \ number_of y) = (\ neg ((number_of (y + (uminus x)))::int))" + unfolding neg_def number_of_is_id by (simp add: not_less) + +lemmas intarithrel = + int_eq_number_of_eq + lift_bool[OF int_iszero_number_of_Pls] nlift_bool[OF int_nonzero_number_of_Min] int_iszero_number_of_Bit0 + lift_bool[OF int_iszero_number_of_Bit1] int_less_number_of_eq_neg nlift_bool[OF int_not_neg_number_of_Pls] lift_bool[OF int_neg_number_of_Min] + int_neg_number_of_Bit0 int_neg_number_of_Bit1 int_le_number_of_eq + +lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (v + w)" + by simp + +lemma int_number_of_diff_sym: "((number_of v)::int) - number_of w = number_of (v + (uminus w))" + by simp + +lemma int_number_of_mult_sym: "((number_of v)::int) * number_of w = number_of (v * w)" + by simp + +lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (uminus v)" + by simp + +lemmas intarith = int_number_of_add_sym int_number_of_minus_sym int_number_of_diff_sym int_number_of_mult_sym + +lemmas natarith = add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of + +lemmas powerarith = nat_number_of zpower_number_of_even + zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring] + zpower_Pls zpower_Min + +definition float :: "(int \ int) \ real" where + "float = (\(a, b). real a * 2 powr real b)" + +lemma float_add_l0: "float (0, e) + x = x" + by (simp add: float_def) + +lemma float_add_r0: "x + float (0, e) = x" + by (simp add: float_def) + +lemma float_add: + "float (a1, e1) + float (a2, e2) = + (if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1) else float (a1*2^(nat (e1-e2))+a2, e2))" + by (simp add: float_def algebra_simps powr_realpow[symmetric] powr_divide2[symmetric]) + +lemma float_mult_l0: "float (0, e) * x = float (0, 0)" + by (simp add: float_def) + +lemma float_mult_r0: "x * float (0, e) = float (0, 0)" + by (simp add: float_def) + +lemma float_mult: + "float (a1, e1) * float (a2, e2) = (float (a1 * a2, e1 + e2))" + by (simp add: float_def powr_add) + +lemma float_minus: + "- (float (a,b)) = float (-a, b)" + by (simp add: float_def) + +lemma zero_le_float: + "(0 <= float (a,b)) = (0 <= a)" + using powr_gt_zero[of 2 "real b", arith] + by (simp add: float_def zero_le_mult_iff) + +lemma float_le_zero: + "(float (a,b) <= 0) = (a <= 0)" + using powr_gt_zero[of 2 "real b", arith] + by (simp add: float_def mult_le_0_iff) + +lemma float_abs: + "abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))" + using powr_gt_zero[of 2 "real b", arith] + by (simp add: float_def abs_if mult_less_0_iff) + +lemma float_zero: + "float (0, b) = 0" + by (simp add: float_def) + +lemma float_pprt: + "pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))" + by (auto simp add: zero_le_float float_le_zero float_zero) + +lemma float_nprt: + "nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))" + by (auto simp add: zero_le_float float_le_zero float_zero) + +definition lbound :: "real \ real" + where "lbound x = min 0 x" + +definition ubound :: "real \ real" + where "ubound x = max 0 x" + +lemma lbound: "lbound x \ x" + by (simp add: lbound_def) + +lemma ubound: "x \ ubound x" + by (simp add: ubound_def) + +lemma pprt_lbound: "pprt (lbound x) = float (0, 0)" + by (auto simp: float_def lbound_def) + +lemma nprt_ubound: "nprt (ubound x) = float (0, 0)" + by (auto simp: float_def ubound_def) + +lemmas floatarith[simplified norm_0_1] = float_add float_add_l0 float_add_r0 float_mult float_mult_l0 float_mult_r0 + float_minus float_abs zero_le_float float_pprt float_nprt pprt_lbound nprt_ubound + +(* for use with the compute oracle *) +lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false + +use "~~/src/HOL/Tools/float_arith.ML" + +end