diff -r f978ecaf119a -r 9fa6dde8d959 src/HOL/Data_Structures/Tree23_of_List.thy --- a/src/HOL/Data_Structures/Tree23_of_List.thy Thu Aug 06 17:11:33 2020 +0200 +++ b/src/HOL/Data_Structures/Tree23_of_List.thy Thu Aug 06 17:39:57 2020 +0200 @@ -22,9 +22,9 @@ "len (T _) = 1" | "len (TTs _ _ ts) = len ts + 1" -fun trees :: "'a tree23s \ 'a tree23 list" where -"trees (T t) = [t]" | -"trees (TTs t a ts) = t # trees ts" +fun trees :: "'a tree23s \ 'a tree23 set" where +"trees (T t) = {t}" | +"trees (TTs t a ts) = {t} \ trees ts" text \Join pairs of adjacent trees:\ @@ -97,12 +97,12 @@ subsubsection \Completeness:\ lemma complete_join_adj: - "\t \ set(trees ts). complete t \ height t = n \ not_T ts \ - \t \ set(trees (join_adj ts)). complete t \ height t = Suc n" + "\t \ trees ts. complete t \ height t = n \ not_T ts \ + \t \ trees (join_adj ts). complete t \ height t = Suc n" by (induction ts rule: join_adj.induct) auto lemma complete_join_all: - "\t \ set(trees ts). complete t \ height t = n \ complete (join_all ts)" + "\t \ trees ts. complete t \ height t = n \ complete (join_all ts)" proof (induction ts arbitrary: n rule: measure_induct_rule[where f = "len"]) case (less ts) show ?case @@ -116,7 +116,7 @@ qed qed -lemma complete_leaves: "t \ set(trees (leaves as)) \ complete t \ height t = 0" +lemma complete_leaves: "t \ trees (leaves as) \ complete t \ height t = 0" by (induction as) auto corollary complete: "complete(tree23_of_list as)"