diff -r a642599ffdea -r 9fc34f76b4e8 src/ZF/ArithSimp.thy --- a/src/ZF/ArithSimp.thy Tue Sep 27 17:46:52 2022 +0100 +++ b/src/ZF/ArithSimp.thy Tue Sep 27 17:54:20 2022 +0100 @@ -82,14 +82,14 @@ nat_into_Ord not_lt_iff_le [THEN iffD1] lemma raw_mod_type: "\m:nat; n:nat\ \ raw_mod (m, n) \ nat" -apply (unfold raw_mod_def) + unfolding raw_mod_def apply (rule Ord_transrec_type) apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff]) apply (blast intro: div_rls) done lemma mod_type [TC,iff]: "m mod n \ nat" -apply (unfold mod_def) + unfolding mod_def apply (simp (no_asm) add: mod_def raw_mod_type) done @@ -98,13 +98,13 @@ certain equations **) lemma DIVISION_BY_ZERO_DIV: "a div 0 = 0" -apply (unfold div_def) + unfolding div_def apply (rule raw_div_def [THEN def_transrec, THEN trans]) apply (simp (no_asm_simp)) done (*NOT for adding to default simpset*) lemma DIVISION_BY_ZERO_MOD: "a mod 0 = natify(a)" -apply (unfold mod_def) + unfolding mod_def apply (rule raw_mod_def [THEN def_transrec, THEN trans]) apply (simp (no_asm_simp)) done (*NOT for adding to default simpset*) @@ -138,14 +138,14 @@ subsection\Division\ lemma raw_div_type: "\m:nat; n:nat\ \ raw_div (m, n) \ nat" -apply (unfold raw_div_def) + unfolding raw_div_def apply (rule Ord_transrec_type) apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff]) apply (blast intro: div_rls) done lemma div_type [TC,iff]: "m div n \ nat" -apply (unfold div_def) + unfolding div_def apply (simp (no_asm) add: div_def raw_div_type) done