diff -r 2bc2a8599369 -r a03a63b81f44 src/HOL/ZF/Zet.thy --- a/src/HOL/ZF/Zet.thy Mon Jan 14 18:33:53 2019 +0000 +++ b/src/HOL/ZF/Zet.thy Mon Jan 14 18:35:03 2019 +0000 @@ -37,7 +37,7 @@ apply (rule_tac x="Repl z (g o (inv_into A f))" in exI) apply (simp add: explode_Repl_eq) apply (subgoal_tac "explode z = f ` A") - apply (simp_all add: image_comp [symmetric]) + apply (simp_all add: image_image cong: image_cong_simp) done lemma zet_image_mem: @@ -98,7 +98,7 @@ lemma zimplode_zexplode: "zimplode (zexplode z) = z" apply (simp add: zimplode_def zexplode_def) apply (subst Abs_zet_inverse) - apply (auto simp add: explode_mem_zet implode_explode) + apply (auto simp add: explode_mem_zet) done lemma zin_zexplode_eq: "zin x (zexplode A) = Elem x A"