diff -r bb18eed53ed6 -r a1119cf551e8 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Tue Aug 13 14:20:22 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Tue Aug 13 16:25:47 2013 +0200 @@ -3352,7 +3352,7 @@ next case False obtain y where "y\s" and y:"\x\s. dist z y \ dist z x" using distance_attains_inf[OF assms(2) False] by auto - show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) z + (norm(y - z))\ / 2" in exI) + show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) z + (norm(y - z))\<^sup>2 / 2" in exI) apply rule defer apply rule proof- fix x assume "x\s" have "\ 0 < inner (z - y) (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma) @@ -3363,7 +3363,7 @@ using `x\s` `y\s` by (auto simp add: dist_commute algebra_simps) qed moreover have "0 < norm (y - z) ^ 2" using `y\s` `z\s` by auto hence "0 < inner (y - z) (y - z)" unfolding power2_norm_eq_inner by simp - ultimately show "inner (y - z) z + (norm (y - z))\ / 2 < inner (y - z) x" + ultimately show "inner (y - z) z + (norm (y - z))\<^sup>2 / 2 < inner (y - z) x" unfolding power2_norm_eq_inner and not_less by (auto simp add: field_simps inner_commute inner_diff) qed(insert `y\s` `z\s`, auto) qed