diff -r 33147ecac5f9 -r a1ba833d6b61 src/ZF/Integ/EquivClass.thy --- a/src/ZF/Integ/EquivClass.thy Wed Jul 09 12:41:47 2003 +0200 +++ b/src/ZF/Integ/EquivClass.thy Thu Jul 10 17:14:41 2003 +0200 @@ -125,9 +125,9 @@ (*Conversion rule*) lemma UN_equiv_class: "[| equiv(A,r); congruent(r,b); a: A |] ==> (UN x:r``{a}. b(x)) = b(a)" -apply (rule trans [OF refl [THEN UN_cong] UN_constant]) -apply (erule_tac [2] equiv_class_self) -prefer 2 apply assumption +apply (subgoal_tac "\x \ r``{a}. b(x) = b(a)") + apply simp + apply (blast intro: equiv_class_self) apply (unfold equiv_def sym_def congruent_def, blast) done