diff -r 407de0768126 -r a1f5c5c26fa6 src/HOL/Analysis/Gamma_Function.thy --- a/src/HOL/Analysis/Gamma_Function.thy Thu Aug 17 14:40:42 2017 +0200 +++ b/src/HOL/Analysis/Gamma_Function.thy Thu Aug 17 14:52:56 2017 +0200 @@ -101,7 +101,7 @@ also have "(\n. sin_coeff n *\<^sub>R z^n) sums sin z \ (\n. ((-1)^n / fact (2*n+1)) *\<^sub>R z^(2*n+1)) sums sin z" by (subst sums_mono_reindex[of "\n. 2*n+1", symmetric]) - (auto simp: sin_coeff_def subseq_def ac_simps elim!: oddE) + (auto simp: sin_coeff_def strict_mono_def ac_simps elim!: oddE) finally show ?thesis . qed @@ -111,7 +111,7 @@ also have "(\n. cos_coeff n *\<^sub>R z^n) sums cos z \ (\n. ((-1)^n / fact (2*n)) *\<^sub>R z^(2*n)) sums cos z" by (subst sums_mono_reindex[of "\n. 2*n", symmetric]) - (auto simp: cos_coeff_def subseq_def ac_simps elim!: evenE) + (auto simp: cos_coeff_def strict_mono_def ac_simps elim!: evenE) finally show ?thesis . qed @@ -2038,7 +2038,7 @@ hence "?g \ ?powr 2 (2*z) * Gamma z * Gamma (z+1/2) / Gamma (2*z)" using LIMSEQ_subseq_LIMSEQ[OF Gamma_series'_LIMSEQ, of "op*2" "2*z"] by (intro tendsto_intros Gamma_series'_LIMSEQ) - (simp_all add: o_def subseq_def Gamma_eq_zero_iff) + (simp_all add: o_def strict_mono_def Gamma_eq_zero_iff) ultimately have "?h \ ?powr 2 (2*z) * Gamma z * Gamma (z+1/2) / Gamma (2*z)" by (rule Lim_transform_eventually) } note lim = this