diff -r 407de0768126 -r a1f5c5c26fa6 src/HOL/Library/Liminf_Limsup.thy --- a/src/HOL/Library/Liminf_Limsup.thy Thu Aug 17 14:40:42 2017 +0200 +++ b/src/HOL/Library/Liminf_Limsup.thy Thu Aug 17 14:52:56 2017 +0200 @@ -379,20 +379,20 @@ lemma liminf_subseq_mono: fixes X :: "nat \ 'a :: complete_linorder" - assumes "subseq r" + assumes "strict_mono r" shows "liminf X \ liminf (X \ r) " proof- have "\n. (INF m:{n..}. X m) \ (INF m:{n..}. (X \ r) m)" proof (safe intro!: INF_mono) fix n m :: nat assume "n \ m" then show "\ma\{n..}. X ma \ (X \ r) m" - using seq_suble[OF \subseq r\, of m] by (intro bexI[of _ "r m"]) auto + using seq_suble[OF \strict_mono r\, of m] by (intro bexI[of _ "r m"]) auto qed then show ?thesis by (auto intro!: SUP_mono simp: liminf_SUP_INF comp_def) qed lemma limsup_subseq_mono: fixes X :: "nat \ 'a :: complete_linorder" - assumes "subseq r" + assumes "strict_mono r" shows "limsup (X \ r) \ limsup X" proof- have "(SUP m:{n..}. (X \ r) m) \ (SUP m:{n..}. X m)" for n @@ -400,7 +400,7 @@ fix m :: nat assume "n \ m" then show "\ma\{n..}. (X \ r) m \ X ma" - using seq_suble[OF \subseq r\, of m] by (intro bexI[of _ "r m"]) auto + using seq_suble[OF \strict_mono r\, of m] by (intro bexI[of _ "r m"]) auto qed then show ?thesis by (auto intro!: INF_mono simp: limsup_INF_SUP comp_def) @@ -587,9 +587,9 @@ lemma compact_complete_linorder: fixes X :: "nat \ 'a::{complete_linorder,linorder_topology}" - shows "\l r. subseq r \ (X \ r) \ l" + shows "\l r. strict_mono r \ (X \ r) \ l" proof - - obtain r where "subseq r" and mono: "monoseq (X \ r)" + obtain r where "strict_mono r" and mono: "monoseq (X \ r)" using seq_monosub[of X] unfolding comp_def by auto @@ -599,7 +599,7 @@ using lim_increasing_cl[of "X \ r"] lim_decreasing_cl[of "X \ r"] by auto then show ?thesis - using \subseq r\ by auto + using \strict_mono r\ by auto qed lemma tendsto_Limsup: