diff -r c52d1c130898 -r a30e50d4aeeb src/HOL/Multivariate_Analysis/normarith.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Multivariate_Analysis/normarith.ML Sat May 15 18:11:00 2010 +0200 @@ -0,0 +1,415 @@ +(* Title: Library/normarith.ML + Author: Amine Chaieb, University of Cambridge + Description: A simple decision procedure for linear problems in euclidean space +*) + + (* Now the norm procedure for euclidean spaces *) + + +signature NORM_ARITH = +sig + val norm_arith : Proof.context -> conv + val norm_arith_tac : Proof.context -> int -> tactic +end + +structure NormArith : NORM_ARITH = +struct + + open Conv; + val bool_eq = op = : bool *bool -> bool + fun dest_ratconst t = case term_of t of + Const(@{const_name divide}, _)$a$b => Rat.rat_of_quotient(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd) + | Const(@{const_name inverse}, _)$a => Rat.rat_of_quotient(1, HOLogic.dest_number a |> snd) + | _ => Rat.rat_of_int (HOLogic.dest_number (term_of t) |> snd) + fun is_ratconst t = can dest_ratconst t + fun augment_norm b t acc = case term_of t of + Const(@{const_name norm}, _) $ _ => insert (eq_pair bool_eq (op aconvc)) (b,Thm.dest_arg t) acc + | _ => acc + fun find_normedterms t acc = case term_of t of + @{term "op + :: real => _"}$_$_ => + find_normedterms (Thm.dest_arg1 t) (find_normedterms (Thm.dest_arg t) acc) + | @{term "op * :: real => _"}$_$n => + if not (is_ratconst (Thm.dest_arg1 t)) then acc else + augment_norm (dest_ratconst (Thm.dest_arg1 t) >=/ Rat.zero) + (Thm.dest_arg t) acc + | _ => augment_norm true t acc + + val cterm_lincomb_neg = FuncUtil.Ctermfunc.map Rat.neg + fun cterm_lincomb_cmul c t = + if c =/ Rat.zero then FuncUtil.Ctermfunc.empty else FuncUtil.Ctermfunc.map (fn x => x */ c) t + fun cterm_lincomb_add l r = FuncUtil.Ctermfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r + fun cterm_lincomb_sub l r = cterm_lincomb_add l (cterm_lincomb_neg r) + fun cterm_lincomb_eq l r = FuncUtil.Ctermfunc.is_empty (cterm_lincomb_sub l r) + + val int_lincomb_neg = FuncUtil.Intfunc.map Rat.neg + fun int_lincomb_cmul c t = + if c =/ Rat.zero then FuncUtil.Intfunc.empty else FuncUtil.Intfunc.map (fn x => x */ c) t + fun int_lincomb_add l r = FuncUtil.Intfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r + fun int_lincomb_sub l r = int_lincomb_add l (int_lincomb_neg r) + fun int_lincomb_eq l r = FuncUtil.Intfunc.is_empty (int_lincomb_sub l r) + +fun vector_lincomb t = case term_of t of + Const(@{const_name plus}, _) $ _ $ _ => + cterm_lincomb_add (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t)) + | Const(@{const_name minus}, _) $ _ $ _ => + cterm_lincomb_sub (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t)) + | Const(@{const_name scaleR}, _)$_$_ => + cterm_lincomb_cmul (dest_ratconst (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t)) + | Const(@{const_name uminus}, _)$_ => + cterm_lincomb_neg (vector_lincomb (Thm.dest_arg t)) +(* FIXME: how should we handle numerals? + | Const(@ {const_name vec},_)$_ => + let + val b = ((snd o HOLogic.dest_number o term_of o Thm.dest_arg) t = 0 + handle TERM _=> false) + in if b then FuncUtil.Ctermfunc.onefunc (t,Rat.one) + else FuncUtil.Ctermfunc.empty + end +*) + | _ => FuncUtil.Ctermfunc.onefunc (t,Rat.one) + + fun vector_lincombs ts = + fold_rev + (fn t => fn fns => case AList.lookup (op aconvc) fns t of + NONE => + let val f = vector_lincomb t + in case find_first (fn (_,f') => cterm_lincomb_eq f f') fns of + SOME (_,f') => (t,f') :: fns + | NONE => (t,f) :: fns + end + | SOME _ => fns) ts [] + +fun replacenegnorms cv t = case term_of t of + @{term "op + :: real => _"}$_$_ => binop_conv (replacenegnorms cv) t +| @{term "op * :: real => _"}$_$_ => + if dest_ratconst (Thm.dest_arg1 t) reflexive t +fun flip v eq = + if FuncUtil.Ctermfunc.defined eq v + then FuncUtil.Ctermfunc.update (v, Rat.neg (FuncUtil.Ctermfunc.apply eq v)) eq else eq +fun allsubsets s = case s of + [] => [[]] +|(a::t) => let val res = allsubsets t in + map (cons a) res @ res end +fun evaluate env lin = + FuncUtil.Intfunc.fold (fn (x,c) => fn s => s +/ c */ (FuncUtil.Intfunc.apply env x)) + lin Rat.zero + +fun solve (vs,eqs) = case (vs,eqs) of + ([],[]) => SOME (FuncUtil.Intfunc.onefunc (0,Rat.one)) + |(_,eq::oeqs) => + (case filter (member (op =) vs) (FuncUtil.Intfunc.dom eq) of (*FIXME use find_first here*) + [] => NONE + | v::_ => + if FuncUtil.Intfunc.defined eq v + then + let + val c = FuncUtil.Intfunc.apply eq v + val vdef = int_lincomb_cmul (Rat.neg (Rat.inv c)) eq + fun eliminate eqn = if not (FuncUtil.Intfunc.defined eqn v) then eqn + else int_lincomb_add (int_lincomb_cmul (FuncUtil.Intfunc.apply eqn v) vdef) eqn + in (case solve (remove (op =) v vs, map eliminate oeqs) of + NONE => NONE + | SOME soln => SOME (FuncUtil.Intfunc.update (v, evaluate soln (FuncUtil.Intfunc.delete_safe v vdef)) soln)) + end + else NONE) + +fun combinations k l = if k = 0 then [[]] else + case l of + [] => [] +| h::t => map (cons h) (combinations (k - 1) t) @ combinations k t + + +fun forall2 p l1 l2 = case (l1,l2) of + ([],[]) => true + | (h1::t1,h2::t2) => p h1 h2 andalso forall2 p t1 t2 + | _ => false; + + +fun vertices vs eqs = + let + fun vertex cmb = case solve(vs,cmb) of + NONE => NONE + | SOME soln => SOME (map (fn v => FuncUtil.Intfunc.tryapplyd soln v Rat.zero) vs) + val rawvs = map_filter vertex (combinations (length vs) eqs) + val unset = filter (forall (fn c => c >=/ Rat.zero)) rawvs + in fold_rev (insert (uncurry (forall2 (curry op =/)))) unset [] + end + +fun subsumes l m = forall2 (fn x => fn y => Rat.abs x <=/ Rat.abs y) l m + +fun subsume todo dun = case todo of + [] => dun +|v::ovs => + let val dun' = if exists (fn w => subsumes w v) dun then dun + else v::(filter (fn w => not(subsumes v w)) dun) + in subsume ovs dun' + end; + +fun match_mp PQ P = P RS PQ; + +fun cterm_of_rat x = +let val (a, b) = Rat.quotient_of_rat x +in + if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a + else Thm.capply (Thm.capply @{cterm "op / :: real => _"} + (Numeral.mk_cnumber @{ctyp "real"} a)) + (Numeral.mk_cnumber @{ctyp "real"} b) +end; + +fun norm_cmul_rule c th = instantiate' [] [SOME (cterm_of_rat c)] (th RS @{thm norm_cmul_rule_thm}); + +fun norm_add_rule th1 th2 = [th1, th2] MRS @{thm norm_add_rule_thm}; + + (* I think here the static context should be sufficient!! *) +fun inequality_canon_rule ctxt = + let + (* FIXME : Should be computed statically!! *) + val real_poly_conv = + Semiring_Normalizer.semiring_normalize_wrapper ctxt + (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) + in fconv_rule (arg_conv ((rewr_conv @{thm ge_iff_diff_ge_0}) then_conv arg_conv (Numeral_Simprocs.field_comp_conv then_conv real_poly_conv))) +end; + + fun absc cv ct = case term_of ct of + Abs (v,_, _) => + let val (x,t) = Thm.dest_abs (SOME v) ct + in Thm.abstract_rule ((fst o dest_Free o term_of) x) x (cv t) + end + | _ => all_conv ct; + +fun sub_conv cv ct = (comb_conv cv else_conv absc cv) ct; +fun botc1 conv ct = + ((sub_conv (botc1 conv)) then_conv (conv else_conv all_conv)) ct; + + val apply_pth1 = rewr_conv @{thm pth_1}; + val apply_pth2 = rewr_conv @{thm pth_2}; + val apply_pth3 = rewr_conv @{thm pth_3}; + val apply_pth4 = rewrs_conv @{thms pth_4}; + val apply_pth5 = rewr_conv @{thm pth_5}; + val apply_pth6 = rewr_conv @{thm pth_6}; + val apply_pth7 = rewrs_conv @{thms pth_7}; + val apply_pth8 = rewr_conv @{thm pth_8} then_conv arg1_conv Numeral_Simprocs.field_comp_conv then_conv (try_conv (rewr_conv (mk_meta_eq @{thm scaleR_zero_left}))); + val apply_pth9 = rewrs_conv @{thms pth_9} then_conv arg1_conv (arg1_conv Numeral_Simprocs.field_comp_conv); + val apply_ptha = rewr_conv @{thm pth_a}; + val apply_pthb = rewrs_conv @{thms pth_b}; + val apply_pthc = rewrs_conv @{thms pth_c}; + val apply_pthd = try_conv (rewr_conv @{thm pth_d}); + +fun headvector t = case t of + Const(@{const_name plus}, _)$ + (Const(@{const_name scaleR}, _)$l$v)$r => v + | Const(@{const_name scaleR}, _)$l$v => v + | _ => error "headvector: non-canonical term" + +fun vector_cmul_conv ct = + ((apply_pth5 then_conv arg1_conv Numeral_Simprocs.field_comp_conv) else_conv + (apply_pth6 then_conv binop_conv vector_cmul_conv)) ct + +fun vector_add_conv ct = apply_pth7 ct + handle CTERM _ => + (apply_pth8 ct + handle CTERM _ => + (case term_of ct of + Const(@{const_name plus},_)$lt$rt => + let + val l = headvector lt + val r = headvector rt + in (case Term_Ord.fast_term_ord (l,r) of + LESS => (apply_pthb then_conv arg_conv vector_add_conv + then_conv apply_pthd) ct + | GREATER => (apply_pthc then_conv arg_conv vector_add_conv + then_conv apply_pthd) ct + | EQUAL => (apply_pth9 then_conv + ((apply_ptha then_conv vector_add_conv) else_conv + arg_conv vector_add_conv then_conv apply_pthd)) ct) + end + | _ => reflexive ct)) + +fun vector_canon_conv ct = case term_of ct of + Const(@{const_name plus},_)$_$_ => + let + val ((p,l),r) = Thm.dest_comb ct |>> Thm.dest_comb + val lth = vector_canon_conv l + val rth = vector_canon_conv r + val th = Drule.binop_cong_rule p lth rth + in fconv_rule (arg_conv vector_add_conv) th end + +| Const(@{const_name scaleR}, _)$_$_ => + let + val (p,r) = Thm.dest_comb ct + val rth = Drule.arg_cong_rule p (vector_canon_conv r) + in fconv_rule (arg_conv (apply_pth4 else_conv vector_cmul_conv)) rth + end + +| Const(@{const_name minus},_)$_$_ => (apply_pth2 then_conv vector_canon_conv) ct + +| Const(@{const_name uminus},_)$_ => (apply_pth3 then_conv vector_canon_conv) ct + +(* FIXME +| Const(@{const_name vec},_)$n => + let val n = Thm.dest_arg ct + in if is_ratconst n andalso not (dest_ratconst n =/ Rat.zero) + then reflexive ct else apply_pth1 ct + end +*) +| _ => apply_pth1 ct + +fun norm_canon_conv ct = case term_of ct of + Const(@{const_name norm},_)$_ => arg_conv vector_canon_conv ct + | _ => raise CTERM ("norm_canon_conv", [ct]) + +fun fold_rev2 f [] [] z = z + | fold_rev2 f (x::xs) (y::ys) z = f x y (fold_rev2 f xs ys z) + | fold_rev2 f _ _ _ = raise UnequalLengths; + +fun int_flip v eq = + if FuncUtil.Intfunc.defined eq v + then FuncUtil.Intfunc.update (v, Rat.neg (FuncUtil.Intfunc.apply eq v)) eq else eq; + +local + val pth_zero = @{thm norm_zero} + val tv_n = (ctyp_of_term o Thm.dest_arg o Thm.dest_arg1 o Thm.dest_arg o cprop_of) + pth_zero + val concl = Thm.dest_arg o cprop_of + fun real_vector_combo_prover ctxt translator (nubs,ges,gts) = + let + (* FIXME: Should be computed statically!!*) + val real_poly_conv = + Semiring_Normalizer.semiring_normalize_wrapper ctxt + (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) + val sources = map (Thm.dest_arg o Thm.dest_arg1 o concl) nubs + val rawdests = fold_rev (find_normedterms o Thm.dest_arg o concl) (ges @ gts) [] + val _ = if not (forall fst rawdests) then error "real_vector_combo_prover: Sanity check" + else () + val dests = distinct (op aconvc) (map snd rawdests) + val srcfuns = map vector_lincomb sources + val destfuns = map vector_lincomb dests + val vvs = fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom) (srcfuns @ destfuns) [] + val n = length srcfuns + val nvs = 1 upto n + val srccombs = srcfuns ~~ nvs + fun consider d = + let + fun coefficients x = + let + val inp = if FuncUtil.Ctermfunc.defined d x then FuncUtil.Intfunc.onefunc (0, Rat.neg(FuncUtil.Ctermfunc.apply d x)) + else FuncUtil.Intfunc.empty + in fold_rev (fn (f,v) => fn g => if FuncUtil.Ctermfunc.defined f x then FuncUtil.Intfunc.update (v, FuncUtil.Ctermfunc.apply f x) g else g) srccombs inp + end + val equations = map coefficients vvs + val inequalities = map (fn n => FuncUtil.Intfunc.onefunc (n,Rat.one)) nvs + fun plausiblevertices f = + let + val flippedequations = map (fold_rev int_flip f) equations + val constraints = flippedequations @ inequalities + val rawverts = vertices nvs constraints + fun check_solution v = + let + val f = fold_rev2 (curry FuncUtil.Intfunc.update) nvs v (FuncUtil.Intfunc.onefunc (0, Rat.one)) + in forall (fn e => evaluate f e =/ Rat.zero) flippedequations + end + val goodverts = filter check_solution rawverts + val signfixups = map (fn n => if member (op =) f n then ~1 else 1) nvs + in map (map2 (fn s => fn c => Rat.rat_of_int s */ c) signfixups) goodverts + end + val allverts = fold_rev append (map plausiblevertices (allsubsets nvs)) [] + in subsume allverts [] + end + fun compute_ineq v = + let + val ths = map_filter (fn (v,t) => if v =/ Rat.zero then NONE + else SOME(norm_cmul_rule v t)) + (v ~~ nubs) + fun end_itlist f xs = split_last xs |> uncurry (fold_rev f) + in inequality_canon_rule ctxt (end_itlist norm_add_rule ths) + end + val ges' = map_filter (try compute_ineq) (fold_rev (append o consider) destfuns []) @ + map (inequality_canon_rule ctxt) nubs @ ges + val zerodests = filter + (fn t => null (FuncUtil.Ctermfunc.dom (vector_lincomb t))) (map snd rawdests) + + in fst (RealArith.real_linear_prover translator + (map (fn t => instantiate ([(tv_n, ctyp_of_term t)],[]) pth_zero) + zerodests, + map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv + arg_conv (arg_conv real_poly_conv))) ges', + map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv + arg_conv (arg_conv real_poly_conv))) gts)) + end +in val real_vector_combo_prover = real_vector_combo_prover +end; + +local + val pth = @{thm norm_imp_pos_and_ge} + val norm_mp = match_mp pth + val concl = Thm.dest_arg o cprop_of + fun conjunct1 th = th RS @{thm conjunct1} + fun conjunct2 th = th RS @{thm conjunct2} +fun real_vector_ineq_prover ctxt translator (ges,gts) = + let +(* val _ = error "real_vector_ineq_prover: pause" *) + val ntms = fold_rev find_normedterms (map (Thm.dest_arg o concl) (ges @ gts)) [] + val lctab = vector_lincombs (map snd (filter (not o fst) ntms)) + val (fxns, ctxt') = Variable.variant_fixes (replicate (length lctab) "x") ctxt + fun instantiate_cterm' ty tms = Drule.cterm_rule (Drule.instantiate' ty tms) + fun mk_norm t = Thm.capply (instantiate_cterm' [SOME (ctyp_of_term t)] [] @{cpat "norm :: (?'a :: real_normed_vector) => real"}) t + fun mk_equals l r = Thm.capply (Thm.capply (instantiate_cterm' [SOME (ctyp_of_term l)] [] @{cpat "op == :: ?'a =>_"}) l) r + val asl = map2 (fn (t,_) => fn n => assume (mk_equals (mk_norm t) (cterm_of (ProofContext.theory_of ctxt') (Free(n,@{typ real}))))) lctab fxns + val replace_conv = try_conv (rewrs_conv asl) + val replace_rule = fconv_rule (funpow 2 arg_conv (replacenegnorms replace_conv)) + val ges' = + fold_rev (fn th => fn ths => conjunct1(norm_mp th)::ths) + asl (map replace_rule ges) + val gts' = map replace_rule gts + val nubs = map (conjunct2 o norm_mp) asl + val th1 = real_vector_combo_prover ctxt' translator (nubs,ges',gts') + val shs = filter (member (fn (t,th) => t aconvc cprop_of th) asl) (#hyps (crep_thm th1)) + val th11 = hd (Variable.export ctxt' ctxt [fold implies_intr shs th1]) + val cps = map (swap o Thm.dest_equals) (cprems_of th11) + val th12 = instantiate ([], cps) th11 + val th13 = fold Thm.elim_implies (map (reflexive o snd) cps) th12; + in hd (Variable.export ctxt' ctxt [th13]) + end +in val real_vector_ineq_prover = real_vector_ineq_prover +end; + +local + val rawrule = fconv_rule (arg_conv (rewr_conv @{thm real_eq_0_iff_le_ge_0})) + fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2}) + fun simple_cterm_ord t u = Term_Ord.term_ord (term_of t, term_of u) = LESS; + (* FIXME: Lookup in the context every time!!! Fix this !!!*) + fun splitequation ctxt th acc = + let + val real_poly_neg_conv = #neg + (Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt + (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) simple_cterm_ord) + val (th1,th2) = conj_pair(rawrule th) + in th1::fconv_rule (arg_conv (arg_conv real_poly_neg_conv)) th2::acc + end +in fun real_vector_prover ctxt _ translator (eqs,ges,gts) = + (real_vector_ineq_prover ctxt translator + (fold_rev (splitequation ctxt) eqs ges,gts), RealArith.Trivial) +end; + + fun init_conv ctxt = + Simplifier.rewrite (Simplifier.context ctxt + (HOL_basic_ss addsimps ([(*@{thm vec_0}, @{thm vec_1},*) @{thm dist_norm}, @{thm diff_0_right}, @{thm right_minus}, @{thm diff_self}, @{thm norm_zero}] @ @{thms arithmetic_simps} @ @{thms norm_pths}))) + then_conv Numeral_Simprocs.field_comp_conv + then_conv nnf_conv + + fun pure ctxt = fst o RealArith.gen_prover_real_arith ctxt (real_vector_prover ctxt); + fun norm_arith ctxt ct = + let + val ctxt' = Variable.declare_term (term_of ct) ctxt + val th = init_conv ctxt' ct + in equal_elim (Drule.arg_cong_rule @{cterm Trueprop} (symmetric th)) + (pure ctxt' (Thm.rhs_of th)) + end + + fun norm_arith_tac ctxt = + clarify_tac HOL_cs THEN' + Object_Logic.full_atomize_tac THEN' + CSUBGOAL ( fn (p,i) => rtac (norm_arith ctxt (Thm.dest_arg p )) i); + +end;