diff -r 161c5d8ae266 -r a39baba12732 src/HOL/Isar_Examples/Mutilated_Checkerboard.thy --- a/src/HOL/Isar_Examples/Mutilated_Checkerboard.thy Tue Aug 02 18:13:24 2016 +0200 +++ b/src/HOL/Isar_Examples/Mutilated_Checkerboard.thy Tue Aug 02 18:44:37 2016 +0200 @@ -6,7 +6,7 @@ section \The Mutilated Checker Board Problem\ theory Mutilated_Checkerboard -imports Main + imports Main begin text \ @@ -16,11 +16,10 @@ subsection \Tilings\ -inductive_set tiling :: "'a set set \ 'a set set" - for A :: "'a set set" -where - empty: "{} \ tiling A" -| Un: "a \ t \ tiling A" if "a \ A" and "t \ tiling A" and "a \ - t" +inductive_set tiling :: "'a set set \ 'a set set" for A :: "'a set set" + where + empty: "{} \ tiling A" + | Un: "a \ t \ tiling A" if "a \ A" and "t \ tiling A" and "a \ - t" text \The union of two disjoint tilings is a tiling.\ @@ -114,9 +113,9 @@ subsection \Dominoes\ inductive_set domino :: "(nat \ nat) set set" -where - horiz: "{(i, j), (i, j + 1)} \ domino" -| vertl: "{(i, j), (i + 1, j)} \ domino" + where + horiz: "{(i, j), (i, j + 1)} \ domino" + | vertl: "{(i, j), (i + 1, j)} \ domino" lemma dominoes_tile_row: "{i} \ below (2 * n) \ tiling domino" @@ -242,10 +241,8 @@ subsection \Main theorem\ definition mutilated_board :: "nat \ nat \ (nat \ nat) set" - where - "mutilated_board m n = - below (2 * (m + 1)) \ below (2 * (n + 1)) - - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}" + where "mutilated_board m n = + below (2 * (m + 1)) \ below (2 * (n + 1)) - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}" theorem mutil_not_tiling: "mutilated_board m n \ tiling domino" proof (unfold mutilated_board_def)