diff -r 555e5358b8c9 -r a4179bf442d1 src/HOL/Algebra/poly/UnivPoly2.thy --- a/src/HOL/Algebra/poly/UnivPoly2.thy Thu Nov 12 14:32:21 2009 -0800 +++ b/src/HOL/Algebra/poly/UnivPoly2.thy Fri Nov 13 14:14:04 2009 +0100 @@ -557,7 +557,7 @@ lemma deg_eqI: "[| !!m. n < m ==> coeff p m = 0; !!n. n ~= 0 ==> coeff p n ~= 0|] ==> deg p = n" -by (fast intro: le_anti_sym deg_aboveI deg_belowI) +by (fast intro: le_antisym deg_aboveI deg_belowI) (* Degree and polynomial operations *) @@ -571,11 +571,11 @@ lemma deg_monom [simp]: "a ~= 0 ==> deg (monom a n::'a::ring up) = n" -by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI) +by (fastsimp intro: le_antisym deg_aboveI deg_belowI) lemma deg_const [simp]: "deg (monom (a::'a::ring) 0) = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg (monom a 0) <= 0" by (rule deg_aboveI) simp next show "0 <= deg (monom a 0)" by (rule deg_belowI) simp @@ -583,7 +583,7 @@ lemma deg_zero [simp]: "deg 0 = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg 0 <= 0" by (rule deg_aboveI) simp next show "0 <= deg 0" by (rule deg_belowI) simp @@ -591,7 +591,7 @@ lemma deg_one [simp]: "deg 1 = 0" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg 1 <= 0" by (rule deg_aboveI) simp next show "0 <= deg 1" by (rule deg_belowI) simp @@ -612,7 +612,7 @@ lemma deg_uminus [simp]: "deg (-p::('a::ring) up) = deg p" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg (- p) <= deg p" by (simp add: deg_aboveI deg_aboveD) next show "deg p <= deg (- p)" @@ -626,7 +626,7 @@ lemma deg_smult [simp]: "deg ((a::'a::domain) *s p) = (if a = 0 then 0 else deg p)" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg (a *s p) <= (if a = 0 then 0 else deg p)" by (rule deg_smult_ring) next show "(if a = 0 then 0 else deg p) <= deg (a *s p)" @@ -657,7 +657,7 @@ lemma deg_mult [simp]: "[| (p::'a::domain up) ~= 0; q ~= 0|] ==> deg (p * q) = deg p + deg q" -proof (rule le_anti_sym) +proof (rule le_antisym) show "deg (p * q) <= deg p + deg q" by (rule deg_mult_ring) next let ?s = "(%i. coeff p i * coeff q (deg p + deg q - i))"