diff -r 89813bbf0f3e -r a462459fb5ce src/HOL/Library/Sublist.thy --- a/src/HOL/Library/Sublist.thy Thu Jan 08 17:25:06 2009 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,507 +0,0 @@ -(* $Id$ *) - -header {* Slices of lists *} - -theory Sublist -imports Multiset -begin - - -lemma sublist_split: "i \ j \ j \ k \ sublist xs {i.. j - 1 \ j - 1 \ k - 1") -apply simp -apply (subgoal_tac "{ja. Suc ja < j} = {0.. Suc ja \ Suc ja < k} = {j - Suc 0.. Suc ja \ Suc ja < j} = {i - 1 .. Suc ja \ Suc ja < k} = {j - 1.. Suc j \ Suc j < k} = {i - 1.. j - 1 \ j - 1 \ k - 1") -apply simp -apply fastsimp -apply fastsimp -apply fastsimp -apply fastsimp -done - -lemma sublist_update1: "i \ inds \ sublist (xs[i := v]) inds = sublist xs inds" -apply (induct xs arbitrary: i inds) -apply simp -apply (case_tac i) -apply (simp add: sublist_Cons) -apply (simp add: sublist_Cons) -done - -lemma sublist_update2: "i \ inds \ sublist (xs[i := v]) inds = (sublist xs inds)[(card {k \ inds. k < i}):= v]" -proof (induct xs arbitrary: i inds) - case Nil thus ?case by simp -next - case (Cons x xs) - thus ?case - proof (cases i) - case 0 with Cons show ?thesis by (simp add: sublist_Cons) - next - case (Suc i') - with Cons show ?thesis - apply simp - apply (simp add: sublist_Cons) - apply auto - apply (auto simp add: nat.split) - apply (simp add: card_less) - apply (simp add: card_less) - apply (simp add: card_less_Suc[symmetric]) - apply (simp add: card_less_Suc2) - done - qed -qed - -lemma sublist_update: "sublist (xs[i := v]) inds = (if i \ inds then (sublist xs inds)[(card {k \ inds. k < i}) := v] else sublist xs inds)" -by (simp add: sublist_update1 sublist_update2) - -lemma sublist_take: "sublist xs {j. j < m} = take m xs" -apply (induct xs arbitrary: m) -apply simp -apply (case_tac m) -apply simp -apply (simp add: sublist_Cons) -done - -lemma sublist_take': "sublist xs {0.. sublist xs {a} = [xs ! a]" -apply (induct xs arbitrary: a) -apply simp -apply(case_tac aa) -apply simp -apply (simp add: sublist_Cons) -apply simp -apply (simp add: sublist_Cons) -done - -lemma sublist_is_Nil: "\i \ inds. i \ length xs \ sublist xs inds = []" -apply (induct xs arbitrary: inds) -apply simp -apply (simp add: sublist_Cons) -apply auto -apply (erule_tac x="{j. Suc j \ inds}" in meta_allE) -apply auto -done - -lemma sublist_Nil': "sublist xs inds = [] \ \i \ inds. i \ length xs" -apply (induct xs arbitrary: inds) -apply simp -apply (simp add: sublist_Cons) -apply (auto split: if_splits) -apply (erule_tac x="{j. Suc j \ inds}" in meta_allE) -apply (case_tac x, auto) -done - -lemma sublist_Nil[simp]: "(sublist xs inds = []) = (\i \ inds. i \ length xs)" -apply (induct xs arbitrary: inds) -apply simp -apply (simp add: sublist_Cons) -apply auto -apply (erule_tac x="{j. Suc j \ inds}" in meta_allE) -apply (case_tac x, auto) -done - -lemma sublist_eq_subseteq: " \ inds' \ inds; sublist xs inds = sublist ys inds \ \ sublist xs inds' = sublist ys inds'" -apply (induct xs arbitrary: ys inds inds') -apply simp -apply (drule sym, rule sym) -apply (simp add: sublist_Nil, fastsimp) -apply (case_tac ys) -apply (simp add: sublist_Nil, fastsimp) -apply (auto simp add: sublist_Cons) -apply (erule_tac x="list" in meta_allE) -apply (erule_tac x="{j. Suc j \ inds}" in meta_allE) -apply (erule_tac x="{j. Suc j \ inds'}" in meta_allE) -apply fastsimp -apply (erule_tac x="list" in meta_allE) -apply (erule_tac x="{j. Suc j \ inds}" in meta_allE) -apply (erule_tac x="{j. Suc j \ inds'}" in meta_allE) -apply fastsimp -done - -lemma sublist_eq: "\ \i \ inds. ((i < length xs) \ (i < length ys)) \ ((i \ length xs ) \ (i \ length ys)); \i \ inds. xs ! i = ys ! i \ \ sublist xs inds = sublist ys inds" -apply (induct xs arbitrary: ys inds) -apply simp -apply (rule sym, simp add: sublist_Nil) -apply (case_tac ys) -apply (simp add: sublist_Nil) -apply (auto simp add: sublist_Cons) -apply (erule_tac x="list" in meta_allE) -apply (erule_tac x="{j. Suc j \ inds}" in meta_allE) -apply fastsimp -apply (erule_tac x="list" in meta_allE) -apply (erule_tac x="{j. Suc j \ inds}" in meta_allE) -apply fastsimp -done - -lemma sublist_eq_samelength: "\ length xs = length ys; \i \ inds. xs ! i = ys ! i \ \ sublist xs inds = sublist ys inds" -by (rule sublist_eq, auto) - -lemma sublist_eq_samelength_iff: "length xs = length ys \ (sublist xs inds = sublist ys inds) = (\i \ inds. xs ! i = ys ! i)" -apply (induct xs arbitrary: ys inds) -apply simp -apply (rule sym, simp add: sublist_Nil) -apply (case_tac ys) -apply (simp add: sublist_Nil) -apply (auto simp add: sublist_Cons) -apply (case_tac i) -apply auto -apply (case_tac i) -apply auto -done - -section {* Another sublist function *} - -function sublist' :: "nat \ nat \ 'a list \ 'a list" -where - "sublist' n m [] = []" -| "sublist' n 0 xs = []" -| "sublist' 0 (Suc m) (x#xs) = (x#sublist' 0 m xs)" -| "sublist' (Suc n) (Suc m) (x#xs) = sublist' n m xs" -by pat_completeness auto -termination by lexicographic_order - -subsection {* Proving equivalence to the other sublist command *} - -lemma sublist'_sublist: "sublist' n m xs = sublist xs {j. n \ j \ j < m}" -apply (induct xs arbitrary: n m) -apply simp -apply (case_tac n) -apply (case_tac m) -apply simp -apply (simp add: sublist_Cons) -apply (case_tac m) -apply simp -apply (simp add: sublist_Cons) -done - - -lemma "sublist' n m xs = sublist xs {n.. (x # sublist' 0 j xs) | Suc i' \ sublist' i' j xs)" -by (cases i) auto - -lemma sublist'_Cons2[simp]: "sublist' i j (x#xs) = (if (j = 0) then [] else ((if (i = 0) then [x] else []) @ sublist' (i - 1) (j - 1) xs))" -apply (cases j) -apply auto -apply (cases i) -apply auto -done - -lemma sublist_n_0: "sublist' n 0 xs = []" -by (induct xs, auto) - -lemma sublist'_Nil': "n \ m \ sublist' n m xs = []" -apply (induct xs arbitrary: n m) -apply simp -apply (case_tac m) -apply simp -apply (case_tac n) -apply simp -apply simp -done - -lemma sublist'_Nil2: "n \ length xs \ sublist' n m xs = []" -apply (induct xs arbitrary: n m) -apply simp -apply (case_tac m) -apply simp -apply (case_tac n) -apply simp -apply simp -done - -lemma sublist'_Nil3: "(sublist' n m xs = []) = ((n \ m) \ (n \ length xs))" -apply (induct xs arbitrary: n m) -apply simp -apply (case_tac m) -apply simp -apply (case_tac n) -apply simp -apply simp -done - -lemma sublist'_notNil: "\ n < length xs; n < m \ \ sublist' n m xs \ []" -apply (induct xs arbitrary: n m) -apply simp -apply (case_tac m) -apply simp -apply (case_tac n) -apply simp -apply simp -done - -lemma sublist'_single: "n < length xs \ sublist' n (Suc n) xs = [xs ! n]" -apply (induct xs arbitrary: n) -apply simp -apply simp -apply (case_tac n) -apply (simp add: sublist_n_0) -apply simp -done - -lemma sublist'_update1: "i \ m \ sublist' n m (xs[i:=v]) = sublist' n m xs" -apply (induct xs arbitrary: n m i) -apply simp -apply simp -apply (case_tac i) -apply simp -apply simp -done - -lemma sublist'_update2: "i < n \ sublist' n m (xs[i:=v]) = sublist' n m xs" -apply (induct xs arbitrary: n m i) -apply simp -apply simp -apply (case_tac i) -apply simp -apply simp -done - -lemma sublist'_update3: "\n \ i; i < m\ \ sublist' n m (xs[i := v]) = (sublist' n m xs)[i - n := v]" -proof (induct xs arbitrary: n m i) - case Nil thus ?case by auto -next - case (Cons x xs) - thus ?case - apply - - apply auto - apply (cases i) - apply auto - apply (cases i) - apply auto - done -qed - -lemma "\ sublist' i j xs = sublist' i j ys; n \ i; m \ j \ \ sublist' n m xs = sublist' n m ys" -proof (induct xs arbitrary: i j ys n m) - case Nil - thus ?case - apply - - apply (rule sym, drule sym) - apply (simp add: sublist'_Nil) - apply (simp add: sublist'_Nil3) - apply arith - done -next - case (Cons x xs i j ys n m) - note c = this - thus ?case - proof (cases m) - case 0 thus ?thesis by (simp add: sublist_n_0) - next - case (Suc m') - note a = this - thus ?thesis - proof (cases n) - case 0 note b = this - show ?thesis - proof (cases ys) - case Nil with a b Cons.prems show ?thesis by (simp add: sublist'_Nil3) - next - case (Cons y ys) - show ?thesis - proof (cases j) - case 0 with a b Cons.prems show ?thesis by simp - next - case (Suc j') with a b Cons.prems Cons show ?thesis - apply - - apply (simp, rule Cons.hyps [of "0" "j'" "ys" "0" "m'"], auto) - done - qed - qed - next - case (Suc n') - show ?thesis - proof (cases ys) - case Nil with Suc a Cons.prems show ?thesis by (auto simp add: sublist'_Nil3) - next - case (Cons y ys) with Suc a Cons.prems show ?thesis - apply - - apply simp - apply (cases j) - apply simp - apply (cases i) - apply simp - apply (rule_tac j="nat" in Cons.hyps [of "0" _ "ys" "n'" "m'"]) - apply simp - apply simp - apply simp - apply simp - apply (rule_tac i="nata" and j="nat" in Cons.hyps [of _ _ "ys" "n'" "m'"]) - apply simp - apply simp - apply simp - done - qed - qed - qed -qed - -lemma length_sublist': "j \ length xs \ length (sublist' i j xs) = j - i" -by (induct xs arbitrary: i j, auto) - -lemma sublist'_front: "\ i < j; i < length xs \ \ sublist' i j xs = xs ! i # sublist' (Suc i) j xs" -apply (induct xs arbitrary: a i j) -apply simp -apply (case_tac j) -apply simp -apply (case_tac i) -apply simp -apply simp -done - -lemma sublist'_back: "\ i < j; j \ length xs \ \ sublist' i j xs = sublist' i (j - 1) xs @ [xs ! (j - 1)]" -apply (induct xs arbitrary: a i j) -apply simp -apply simp -apply (case_tac j) -apply simp -apply auto -apply (case_tac nat) -apply auto -done - -(* suffices that j \ length xs and length ys *) -lemma sublist'_eq_samelength_iff: "length xs = length ys \ (sublist' i j xs = sublist' i j ys) = (\i'. i \ i' \ i' < j \ xs ! i' = ys ! i')" -proof (induct xs arbitrary: ys i j) - case Nil thus ?case by simp -next - case (Cons x xs) - thus ?case - apply - - apply (cases ys) - apply simp - apply simp - apply auto - apply (case_tac i', auto) - apply (erule_tac x="Suc i'" in allE, auto) - apply (erule_tac x="i' - 1" in allE, auto) - apply (case_tac i', auto) - apply (erule_tac x="Suc i'" in allE, auto) - done -qed - -lemma sublist'_all[simp]: "sublist' 0 (length xs) xs = xs" -by (induct xs, auto) - -lemma sublist'_sublist': "sublist' n m (sublist' i j xs) = sublist' (i + n) (min (i + m) j) xs" -by (induct xs arbitrary: i j n m) (auto simp add: min_diff) - -lemma sublist'_append: "\ i \ j; j \ k \ \(sublist' i j xs) @ (sublist' j k xs) = sublist' i k xs" -by (induct xs arbitrary: i j k) auto - -lemma nth_sublist': "\ k < j - i; j \ length xs \ \ (sublist' i j xs) ! k = xs ! (i + k)" -apply (induct xs arbitrary: i j k) -apply auto -apply (case_tac k) -apply auto -apply (case_tac i) -apply auto -done - -lemma set_sublist': "set (sublist' i j xs) = {x. \k. i \ k \ k < j \ k < List.length xs \ x = xs ! k}" -apply (simp add: sublist'_sublist) -apply (simp add: set_sublist) -apply auto -done - -lemma all_in_set_sublist'_conv: "(\j. j \ set (sublist' l r xs) \ P j) = (\k. l \ k \ k < r \ k < List.length xs \ P (xs ! k))" -unfolding set_sublist' by blast - -lemma ball_in_set_sublist'_conv: "(\j \ set (sublist' l r xs). P j) = (\k. l \ k \ k < r \ k < List.length xs \ P (xs ! k))" -unfolding set_sublist' by blast - - -lemma multiset_of_sublist: -assumes l_r: "l \ r \ r \ List.length xs" -assumes left: "\ i. i < l \ (xs::'a list) ! i = ys ! i" -assumes right: "\ i. i \ r \ (xs::'a list) ! i = ys ! i" -assumes multiset: "multiset_of xs = multiset_of ys" - shows "multiset_of (sublist' l r xs) = multiset_of (sublist' l r ys)" -proof - - from l_r have xs_def: "xs = (sublist' 0 l xs) @ (sublist' l r xs) @ (sublist' r (List.length xs) xs)" (is "_ = ?xs_long") - by (simp add: sublist'_append) - from multiset have length_eq: "List.length xs = List.length ys" by (rule multiset_of_eq_length) - with l_r have ys_def: "ys = (sublist' 0 l ys) @ (sublist' l r ys) @ (sublist' r (List.length ys) ys)" (is "_ = ?ys_long") - by (simp add: sublist'_append) - from xs_def ys_def multiset have "multiset_of ?xs_long = multiset_of ?ys_long" by simp - moreover - from left l_r length_eq have "sublist' 0 l xs = sublist' 0 l ys" - by (auto simp add: length_sublist' nth_sublist' intro!: nth_equalityI) - moreover - from right l_r length_eq have "sublist' r (List.length xs) xs = sublist' r (List.length ys) ys" - by (auto simp add: length_sublist' nth_sublist' intro!: nth_equalityI) - moreover - ultimately show ?thesis by (simp add: multiset_of_append) -qed - - -end