diff -r d2c97fc18704 -r a4a1547a6f1e src/HOL/NumberTheory/Int2.thy --- a/src/HOL/NumberTheory/Int2.thy Tue Sep 01 19:48:11 2009 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,299 +0,0 @@ -(* Title: HOL/Quadratic_Reciprocity/Gauss.thy - ID: $Id$ - Authors: Jeremy Avigad, David Gray, and Adam Kramer -*) - -header {*Integers: Divisibility and Congruences*} - -theory Int2 -imports Finite2 WilsonRuss -begin - -definition - MultInv :: "int => int => int" where - "MultInv p x = x ^ nat (p - 2)" - - -subsection {* Useful lemmas about dvd and powers *} - -lemma zpower_zdvd_prop1: - "0 < n \ p dvd y \ p dvd ((y::int) ^ n)" - by (induct n) (auto simp add: dvd_mult2 [of p y]) - -lemma zdvd_bounds: "n dvd m ==> m \ (0::int) | n \ m" -proof - - assume "n dvd m" - then have "~(0 < m & m < n)" - using zdvd_not_zless [of m n] by auto - then show ?thesis by auto -qed - -lemma zprime_zdvd_zmult_better: "[| zprime p; p dvd (m * n) |] ==> - (p dvd m) | (p dvd n)" - apply (cases "0 \ m") - apply (simp add: zprime_zdvd_zmult) - apply (insert zprime_zdvd_zmult [of "-m" p n]) - apply auto - done - -lemma zpower_zdvd_prop2: - "zprime p \ p dvd ((y::int) ^ n) \ 0 < n \ p dvd y" - apply (induct n) - apply simp - apply (frule zprime_zdvd_zmult_better) - apply simp - apply (force simp del:dvd_mult) - done - -lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y" -proof - - assume "0 < z" then have modth: "x mod z \ 0" by simp - have "(x div z) * z \ (x div z) * z" by simp - then have "(x div z) * z \ (x div z) * z + x mod z" using modth by arith - also have "\ = x" - by (auto simp add: zmod_zdiv_equality [symmetric] zmult_ac) - also assume "x < y * z" - finally show ?thesis - by (auto simp add: prems mult_less_cancel_right, insert prems, arith) -qed - -lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \ y" -proof - - assume "0 < z" and "x < (y * z) + z" - then have "x < (y + 1) * z" by (auto simp add: int_distrib) - then have "x div z < y + 1" - apply - - apply (rule_tac y = "y + 1" in div_prop1) - apply (auto simp add: prems) - done - then show ?thesis by auto -qed - -lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \ (x::int)" -proof- - assume "0 < y" - from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto - moreover have "0 \ x mod y" - by (auto simp add: prems pos_mod_sign) - ultimately show ?thesis - by arith -qed - - -subsection {* Useful properties of congruences *} - -lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)" - by (auto simp add: zcong_def) - -lemma zcong_id: "[m = 0] (mod m)" - by (auto simp add: zcong_def) - -lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)" - by (auto simp add: zcong_refl zcong_zadd) - -lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)" - by (induct z) (auto simp add: zcong_zmult) - -lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> - [a = d](mod m)" - apply (erule zcong_trans) - apply simp - done - -lemma aux1: "a - b = (c::int) ==> a = c + b" - by auto - -lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = - [c = b * d] (mod m))" - apply (auto simp add: zcong_def dvd_def) - apply (rule_tac x = "ka + k * d" in exI) - apply (drule aux1)+ - apply (auto simp add: int_distrib) - apply (rule_tac x = "ka - k * d" in exI) - apply (drule aux1)+ - apply (auto simp add: int_distrib) - done - -lemma zcong_zmult_prop2: "[a = b](mod m) ==> - ([c = d * a](mod m) = [c = d * b] (mod m))" - by (auto simp add: zmult_ac zcong_zmult_prop1) - -lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); - ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)" - apply (auto simp add: zcong_def) - apply (drule zprime_zdvd_zmult_better, auto) - done - -lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); - x < m; y < m |] ==> x = y" - by (metis zcong_not zcong_sym zless_linear) - -lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> - ~([x = 1] (mod p))" -proof - assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)" - then have "[1 = -1] (mod p)" - apply (auto simp add: zcong_sym) - apply (drule zcong_trans, auto) - done - then have "[1 + 1 = -1 + 1] (mod p)" - by (simp only: zcong_shift) - then have "[2 = 0] (mod p)" - by auto - then have "p dvd 2" - by (auto simp add: dvd_def zcong_def) - with prems show False - by (auto simp add: zdvd_not_zless) -qed - -lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)" - by (auto simp add: zcong_def) - -lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> - [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)" - by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult) - -lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==> - ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)" - apply auto - apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero) - apply auto - done - -lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)" - by (auto simp add: zcong_zero_equiv_div zdvd_not_zless) - -lemma zcong_zero: "[| 0 \ x; x < m; [x = 0](mod m) |] ==> x = 0" - apply (drule order_le_imp_less_or_eq, auto) - apply (frule_tac m = m in zcong_not_zero) - apply auto - done - -lemma all_relprime_prod_relprime: "[| finite A; \x \ A. zgcd x y = 1 |] - ==> zgcd (setprod id A) y = 1" - by (induct set: finite) (auto simp add: zgcd_zgcd_zmult) - - -subsection {* Some properties of MultInv *} - -lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> - [(MultInv p x) = (MultInv p y)] (mod p)" - by (auto simp add: MultInv_def zcong_zpower) - -lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> - [(x * (MultInv p x)) = 1] (mod p)" -proof (simp add: MultInv_def zcong_eq_zdvd_prop) - assume "2 < p" and "zprime p" and "~ p dvd x" - have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)" - by auto - also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)" - by (simp only: nat_add_distrib) - also have "p - 2 + 1 = p - 1" by arith - finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)" - by (rule ssubst, auto) - also from prems have "[x ^ nat (p - 1) = 1] (mod p)" - by (auto simp add: Little_Fermat) - finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" . -qed - -lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> - [(MultInv p x) * x = 1] (mod p)" - by (auto simp add: MultInv_prop2 zmult_ac) - -lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))" - by (simp add: nat_diff_distrib) - -lemma aux_2: "2 < p ==> 0 < nat (p - 2)" - by auto - -lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> - ~([MultInv p x = 0](mod p))" - apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1) - apply (drule aux_2) - apply (drule zpower_zdvd_prop2, auto) - done - -lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> - [(MultInv p (MultInv p x)) = (x * (MultInv p x) * - (MultInv p (MultInv p x)))] (mod p)" - apply (drule MultInv_prop2, auto) - apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto) - apply (auto simp add: zcong_sym) - done - -lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> - [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)" - apply (frule MultInv_prop3, auto) - apply (insert MultInv_prop2 [of p "MultInv p x"], auto) - apply (drule MultInv_prop2, auto) - apply (drule_tac k = x in zcong_scalar2, auto) - apply (auto simp add: zmult_ac) - done - -lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> - [(MultInv p (MultInv p x)) = x] (mod p)" - apply (frule aux__1, auto) - apply (drule aux__2, auto) - apply (drule zcong_trans, auto) - done - -lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); - ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> - [x = y] (mod p)" - apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and - m = p and k = x in zcong_scalar) - apply (insert MultInv_prop2 [of p x], simp) - apply (auto simp only: zcong_sym [of "MultInv p x * x"]) - apply (auto simp add: zmult_ac) - apply (drule zcong_trans, auto) - apply (drule_tac a = "x * MultInv p y" and k = y in zcong_scalar, auto) - apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac) - apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x]) - apply (auto simp add: zcong_sym) - done - -lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> - [a * MultInv p j = a * MultInv p k] (mod p)" - by (drule MultInv_prop1, auto simp add: zcong_scalar2) - -lemma aux___1: "[j = a * MultInv p k] (mod p) ==> - [j * k = a * MultInv p k * k] (mod p)" - by (auto simp add: zcong_scalar) - -lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); - [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)" - apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 - [of "MultInv p k * k" 1 p "j * k" a]) - apply (auto simp add: zmult_ac) - done - -lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = - (MultInv p j) * a] (mod p)" - by (auto simp add: zmult_assoc zcong_scalar2) - -lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); - [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |] - ==> [k = a * (MultInv p j)] (mod p)" - apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 - [of "MultInv p j * j" 1 p "MultInv p j * a" k]) - apply (auto simp add: zmult_ac zcong_sym) - done - -lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); - ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> - [k = a * MultInv p j] (mod p)" - apply (drule aux___1) - apply (frule aux___2, auto) - by (drule aux___3, drule aux___4, auto) - -lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); - ~([k = 0](mod p)); ~([j = 0](mod p)); - [a * MultInv p j = a * MultInv p k] (mod p) |] ==> - [j = k] (mod p)" - apply (auto simp add: zcong_eq_zdvd_prop [of a p]) - apply (frule zprime_imp_zrelprime, auto) - apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto) - apply (drule MultInv_prop5, auto) - done - -end