diff -r e28870d8b223 -r a4dd02e744e0 doc-src/TutorialI/CTL/document/CTLind.tex --- a/doc-src/TutorialI/CTL/document/CTLind.tex Thu Dec 13 17:57:55 2001 +0100 +++ b/doc-src/TutorialI/CTL/document/CTLind.tex Thu Dec 13 19:05:10 2001 +0100 @@ -37,10 +37,10 @@ % \begin{isamarkuptext}% It is easy to see that for any infinite \isa{A}-avoiding path \isa{f} -with \isa{f\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isasymin}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path +with \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path starting with \isa{s} because (by definition of \isa{Avoid}) there is a -finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}b{\isacharparenright}}. -The proof is by induction on \isa{f\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isasymin}\ Avoid\ s\ A}. However, +finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isadigit{0}}}. +The proof is by induction on \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A}. However, this requires the following reformulation, as explained in \S\ref{sec:ind-var-in-prems} above; the \isa{rule{\isacharunderscore}format} directive undoes the reformulation after the proof.%