diff -r 000000000000 -r a5a9c433f639 src/Pure/library.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Pure/library.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,585 @@ +(* Title: library + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1992 University of Cambridge + +Basic library: booleans, lists, pairs, input/output, etc. +*) + + +(**** Booleans: operators for combining predicates ****) + +infix orf; +fun p orf q = fn x => p x orelse q x ; + +infix andf; +fun p andf q = fn x => p x andalso q x ; + +fun notf p x = not (p x) ; + +fun orl [] = false + | orl (x::l) = x orelse orl l; + +fun andl [] = true + | andl (x::l) = x andalso andl l; + +(*exists pred [x1,...,xn] ======> pred(x1) orelse ... orelse pred(xn)*) +fun exists (pred: 'a -> bool) : 'a list -> bool = + let fun boolf [] = false + | boolf (x::l) = (pred x) orelse boolf l + in boolf end; + +(*forall pred [x1,...,xn] ======> pred(x1) andalso ... andalso pred(xn)*) +fun forall (pred: 'a -> bool) : 'a list -> bool = + let fun boolf [] = true + | boolf (x::l) = (pred x) andalso (boolf l) + in boolf end; + + +(*** Lists ***) + +exception LIST of string; + +(*discriminator and selectors for lists. *) +fun null [] = true + | null (_::_) = false; + +fun hd [] = raise LIST "hd" + | hd (a::_) = a; + +fun tl [] = raise LIST "tl" + | tl (_::l) = l; + + +(*curried functions for pairing and reversed pairing*) +fun pair x y = (x,y); +fun rpair x y = (y,x); + +fun fst(x,y) = x and snd(x,y) = y; + +(*Handy combinators*) +fun curry f x y = f(x,y); +fun uncurry f(x,y) = f x y; +fun I x = x and K x y = x; + +(*Combine two functions forming the union of their domains*) +infix orelf; +fun f orelf g = fn x => f x handle Match=> g x; + + +(*Application of (infix) operator to its left or right argument*) +fun apl (x,f) y = f(x,y); +fun apr (f,y) x = f(x,y); + + +(*functional for pairs*) +fun pairself f (x,y) = (f x, f y); + +(*Apply the function to a component of a pair*) +fun apfst f (x, y) = (f x, y); +fun apsnd f (x, y) = (x, f y); + +fun square (n: int) = n*n; + +fun fact 0 = 1 + | fact n = n * fact(n-1); + + +(*The following versions of fold are designed to fit nicely with infixes.*) + +(* (op @) (e, [x1,...,xn]) ======> ((e @ x1) @ x2) ... @ xn + for operators that associate to the left. TAIL RECURSIVE*) +fun foldl (f: 'a * 'b -> 'a) : 'a * 'b list -> 'a = + let fun itl (e, []) = e + | itl (e, a::l) = itl (f(e,a), l) + in itl end; + +(* (op @) ([x1,...,xn], e) ======> x1 @ (x2 ... @ (xn @ e)) + for operators that associate to the right. Not tail recursive.*) +fun foldr f (l,e) = + let fun itr [] = e + | itr (a::l) = f(a, itr l) + in itr l end; + +(* (op @) [x1,...,xn] ======> x1 @ (x2 ..(x[n-1]. @ xn)) + for n>0, operators that associate to the right. Not tail recursive.*) +fun foldr1 f l = + let fun itr [x] = x + | itr (x::l) = f(x, itr l) + in itr l end; + + +(*Length of a list. Should unquestionably be a standard function*) +local fun length1 (n, [ ]) = n (*TAIL RECURSIVE*) + | length1 (n, x::l) = length1 (n+1, l) +in fun length l = length1 (0,l) end; + + +(*Take the first n elements from l.*) +fun take (n, []) = [] + | take (n, x::xs) = if n>0 then x::take(n-1,xs) + else []; + +(*Drop the first n elements from l.*) +fun drop (_, []) = [] + | drop (n, x::xs) = if n>0 then drop (n-1, xs) + else x::xs; + +(*Return nth element of l, where 0 designates the first element; + raise EXCEPTION if list too short.*) +fun nth_elem NL = case (drop NL) of + [] => raise LIST "nth_elem" + | x::l => x; + + +(*make the list [from, from+1, ..., to]*) +infix upto; +fun from upto to = + if from>to then [] else from :: ((from+1) upto to); + +(*make the list [from, from-1, ..., to]*) +infix downto; +fun from downto to = + if from is = [n,n-1,...,0] *) +fun downto0(i::is,n) = i=n andalso downto0(is,n-1) + | downto0([],n) = n = ~1; + +(*Like Lisp's MAPC -- seq proc [x1,...,xn] evaluates + proc(x1); ... ; proc(xn) for side effects.*) +fun seq (proc: 'a -> unit) : 'a list -> unit = + let fun seqf [] = () + | seqf (x::l) = (proc x; seqf l) + in seqf end; + + +(*** Balanced folding; access to balanced trees ***) + +exception Balance; (*indicates non-positive argument to balancing fun*) + +(*Balanced folding; avoids deep nesting*) +fun fold_bal f [x] = x + | fold_bal f [] = raise Balance + | fold_bal f xs = + let val k = length xs div 2 + in f (fold_bal f (take(k,xs)), + fold_bal f (drop(k,xs))) + end; + +(*Construct something of the form f(...g(...(x)...)) for balanced access*) +fun access_bal (f,g,x) n i = + let fun acc n i = (* 1<=i<=n*) + if n=1 then x else + let val n2 = n div 2 + in if i<=n2 then f (acc n2 i) + else g (acc (n-n2) (i-n2)) + end + in if 1<=i andalso i<=n then acc n i else raise Balance end; + +(*Construct ALL such accesses; could try harder to share recursive calls!*) +fun accesses_bal (f,g,x) n = + let fun acc n = + if n=1 then [x] else + let val n2 = n div 2 + val acc2 = acc n2 + in if n-n2=n2 then map f acc2 @ map g acc2 + else map f acc2 @ map g (acc (n-n2)) end + in if 1<=n then acc n else raise Balance end; + + +(*** Input/Output ***) + +fun prs s = output(std_out,s); +fun writeln s = prs (s ^ "\n"); + +(*Print error message and abort to top level*) +exception ERROR; +fun error (msg) = (writeln msg; raise ERROR); + +fun assert p msg = if p then () else error msg; +fun deny p msg = if p then error msg else (); + +(*For the "test" target in Makefiles -- signifies successful termination*) +fun maketest msg = + (writeln msg; + output(open_out "test", "Test examples ran successfully\n")); + +(*print a list surrounded by the brackets lpar and rpar, with comma separator + print nothing for empty list*) +fun print_list (lpar, rpar, pre: 'a -> unit) (l : 'a list) = + let fun prec(x) = (prs","; pre(x)) + in case l of + [] => () + | x::l => (prs lpar; pre x; seq prec l; prs rpar) + end; + +(*print a list of items separated by newlines*) +fun print_list_ln (pre: 'a -> unit) : 'a list -> unit = + seq (fn x => (pre x; writeln"")); + +fun is_letter ch = + (ord"A" <= ord ch) andalso (ord ch <= ord"Z") orelse + (ord"a" <= ord ch) andalso (ord ch <= ord"z"); + +fun is_digit ch = + (ord"0" <= ord ch) andalso (ord ch <= ord"9"); + +(*letter or _ or prime (') *) +fun is_quasi_letter "_" = true + | is_quasi_letter "'" = true + | is_quasi_letter ch = is_letter ch; + +(*white space: blanks, tabs, newlines*) +val is_blank : string -> bool = fn + " " => true | "\t" => true | "\n" => true | _ => false; + +val is_letdig = is_quasi_letter orf is_digit; + +val to_lower = + let + fun lower ch = + if ch >= "A" andalso ch <= "Z" then + chr (ord ch - ord "A" + ord "a") + else ch; + in + implode o (map lower) o explode + end; + + +(*** Timing ***) + +(*Unconditional timing function*) +val timeit = cond_timeit true; + +(*Timed application function*) +fun timeap f x = timeit(fn()=> f x); + +(*Timed "use" function, printing filenames*) +fun time_use fname = timeit(fn()=> + (writeln("\n**** Starting " ^ fname ^ " ****"); use fname; + writeln("\n**** Finished " ^ fname ^ " ****"))); + + +(*** Misc functions ***) + +(*Function exponentiation: f(...(f x)...) with n applications of f *) +fun funpow n f x = + let fun rep (0,x) = x + | rep (n,x) = rep (n-1, f x) + in rep (n,x) end; + +(*Combine two lists forming a list of pairs: + [x1,...,xn] ~~ [y1,...,yn] ======> [(x1,y1), ..., (xn,yn)] *) +infix ~~; +fun [] ~~ [] = [] + | (x::xs) ~~ (y::ys) = (x,y) :: (xs ~~ ys) + | _ ~~ _ = raise LIST "~~"; + +(*Inverse of ~~; the old 'split'. + [(x1,y1), ..., (xn,yn)] ======> ( [x1,...,xn] , [y1,...,yn] ) *) +fun split_list (l: ('a*'b)list) = (map #1 l, map #2 l); + +(*make the list [x; x; ...; x] of length n*) +fun replicate n (x: 'a) : 'a list = + let fun rep (0,xs) = xs + | rep (n,xs) = rep(n-1, x::xs) + in if n<0 then raise LIST "replicate" + else rep (n,[]) + end; + +(*Flatten a list of lists to a list.*) +fun flat (ls: 'c list list) : 'c list = foldr (op @) (ls,[]); + + +(*** polymorphic set operations ***) + +(*membership in a list*) +infix mem; +fun x mem [] = false + | x mem (y::l) = (x=y) orelse (x mem l); + +(*insertion into list if not already there*) +infix ins; +fun x ins xs = if x mem xs then xs else x::xs; + +(*union of sets represented as lists: no repetitions*) +infix union; +fun xs union [] = xs + | [] union ys = ys + | (x::xs) union ys = xs union (x ins ys); + +infix inter; +fun [] inter ys = [] + | (x::xs) inter ys = if x mem ys then x::(xs inter ys) + else xs inter ys; + +infix subset; +fun [] subset ys = true + | (x::xs) subset ys = x mem ys andalso xs subset ys; + +(*removing an element from a list WITHOUT duplicates*) +infix \; +fun (y::ys) \ x = if x=y then ys else y::(ys \ x) + | [] \ x = []; + +infix \\; +val op \\ = foldl (op \); + +(*** option stuff ***) + +datatype 'a option = None | Some of 'a; + +exception OPTION of string; + +fun the (Some x) = x + | the None = raise OPTION "the"; + +fun is_some (Some _) = true + | is_some None = false; + +fun is_none (Some _) = false + | is_none None = true; + + +(*** Association lists ***) + +(*Association list lookup*) +fun assoc ([], key) = None + | assoc ((keyi,xi)::pairs, key) = + if key=keyi then Some xi else assoc (pairs,key); + +fun assocs ps x = case assoc(ps,x) of None => [] | Some(ys) => ys; + +(*Association list update*) +fun overwrite(al,p as (key,_)) = + let fun over((q as (keyi,_))::pairs) = + if keyi=key then p::pairs else q::(over pairs) + | over[] = [p] + in over al end; + +(*Copy the list preserving elements that satisfy the predicate*) +fun filter (pred: 'a->bool) : 'a list -> 'a list = + let fun filt [] = [] + | filt (x::xs) = if pred(x) then x :: filt xs else filt xs + in filt end; + +fun filter_out f = filter (not o f); + + +(*** List operations, generalized to an arbitrary equality function "eq" + -- so what good are equality types?? ***) + +(*removing an element from a list -- possibly WITH duplicates*) +fun gen_rem eq (xs,y) = filter_out (fn x => eq(x,y)) xs; + +(*generalized membership test*) +fun gen_mem eq (x, []) = false + | gen_mem eq (x, y::ys) = eq(x,y) orelse gen_mem eq (x,ys); + +(*generalized insertion*) +fun gen_ins eq (x,xs) = if gen_mem eq (x,xs) then xs else x::xs; + +(*generalized union*) +fun gen_union eq (xs,[]) = xs + | gen_union eq ([],ys) = ys + | gen_union eq (x::xs,ys) = gen_union eq (xs, gen_ins eq (x,ys)); + +(*Generalized association list lookup*) +fun gen_assoc eq ([], key) = None + | gen_assoc eq ((keyi,xi)::pairs, key) = + if eq(key,keyi) then Some xi else gen_assoc eq (pairs,key); + +(** Finding list elements and duplicates **) + +(* find the position of an element in a list *) +fun find(x,ys) = + let fun f(y::ys,i) = if x=y then i else f(ys,i+1) + | f(_,_) = raise LIST "find" + in f(ys,0) end; + +(*Returns the tail beginning with the first repeated element, or []. *) +fun findrep [] = [] + | findrep (x::xs) = if x mem xs then x::xs else findrep xs; + +fun distinct1 (seen, []) = rev seen + | distinct1 (seen, x::xs) = + if x mem seen then distinct1 (seen, xs) + else distinct1 (x::seen, xs); + +(*Makes a list of the distinct members of the input*) +fun distinct xs = distinct1([],xs); + + +(*Use the keyfun to make a list of (x,key) pairs.*) +fun make_keylist (keyfun: 'a->'b) : 'a list -> ('a * 'b) list = + let fun keypair x = (x, keyfun x) + in map keypair end; + +(*Given a list of (x,key) pairs and a searchkey + return the list of xs from each pair whose key equals searchkey*) +fun keyfilter [] searchkey = [] + | keyfilter ((x,key)::pairs) searchkey = + if key=searchkey then x :: keyfilter pairs searchkey + else keyfilter pairs searchkey; + +fun mapfilter (f: 'a -> 'b option) ([]: 'a list) = [] : 'b list + | mapfilter f (x::xs) = + case (f x) of + None => mapfilter f xs + | Some y => y :: mapfilter f xs; + + +(*Partition list into elements that satisfy predicate and those that don't. + Preserves order of elements in both lists. *) +fun partition (pred: 'a->bool) (ys: 'a list) : ('a list * 'a list) = + let fun part ([], answer) = answer + | part (x::xs, (ys, ns)) = if pred(x) + then part (xs, (x::ys, ns)) + else part (xs, (ys, x::ns)) + in part (rev ys, ([],[])) end; + + +fun partition_eq (eq:'a * 'a -> bool) = + let fun part [] = [] + | part (x::ys) = let val (xs,xs') = partition (apl(x,eq)) ys + in (x::xs)::(part xs') end + in part end; + + +(*Partition a list into buckets [ bi, b(i+1),...,bj ] + putting x in bk if p(k)(x) holds. Preserve order of elements if possible.*) +fun partition_list p i j = + let fun part k xs = + if k>j then + (case xs of [] => [] + | _ => raise LIST "partition_list") + else + let val (ns,rest) = partition (p k) xs; + in ns :: part(k+1)rest end + in part i end; + + +(*Insertion sort. Stable (does not reorder equal elements) + 'less' is less-than test on type 'a. *) +fun sort (less: 'a*'a -> bool) = + let fun insert (x, []) = [x] + | insert (x, y::ys) = + if less(y,x) then y :: insert (x,ys) else x::y::ys; + fun sort1 [] = [] + | sort1 (x::xs) = insert (x, sort1 xs) + in sort1 end; + +(*Transitive Closure. Not Warshall's algorithm*) +fun transitive_closure [] = [] + | transitive_closure ((x,ys)::ps) = + let val qs = transitive_closure ps + val zs = foldl (fn (zs,y) => assocs qs y union zs) (ys,ys) + fun step(u,us) = (u, if x mem us then zs union us else us) + in (x,zs) :: map step qs end; + +(*** Converting integers to strings, generating identifiers, etc. ***) + +(*Expand the number in the given base + example: radixpand(2, 8) gives [1, 0, 0, 0] *) +fun radixpand (base,num) : int list = + let fun radix (n,tail) = + if nn then max(m::ns) else max(n::ns) + | max [] = raise LIST "max"; + +fun min[m : int] = m + | min(m::n::ns) = if m ([x1,...,x(i-1)], [xi,..., xn]) + where xi is the first element that does not satisfy the predicate*) +fun take_prefix (pred : 'a -> bool) (xs: 'a list) : 'a list * 'a list = + let fun take (rxs, []) = (rev rxs, []) + | take (rxs, x::xs) = + if pred x then take(x::rxs, xs) else (rev rxs, x::xs) + in take([],xs) end; + +infix prefix; +fun [] prefix _ = true + | (x::xs) prefix (y::ys) = (x=y) andalso (xs prefix ys) + | _ prefix _ = false; + +(* [x1, x2, ..., xn] ---> [x1, s, x2, s, ..., s, xn] *) +fun separate s (x :: (xs as _ :: _)) = x :: s :: separate s xs + | separate _ xs = xs; + +(*space_implode "..." (explode "hello"); gives "h...e...l...l...o" *) +fun space_implode a bs = implode (separate a bs); + +fun quote s = "\"" ^ s ^ "\""; + +(*Concatenate messages, one per line, into a string*) +val cat_lines = implode o (map (apr(op^,"\n"))); + +(*Scan a list of characters into "words" composed of "letters" (recognized + by is_let) and separated by any number of non-"letters".*) +fun scanwords is_let cs = + let fun scan1 [] = [] + | scan1 cs = + let val (lets, rest) = take_prefix is_let cs + in implode lets :: scanwords is_let rest end; + in scan1 (#2 (take_prefix (not o is_let) cs)) end;