diff -r 340738057c8c -r a6479cb85944 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Mon Feb 22 14:37:56 2016 +0000 +++ b/src/HOL/Transcendental.thy Tue Feb 23 15:47:39 2016 +0000 @@ -472,10 +472,6 @@ lemma diffs_minus: "diffs (\n. - c n) = (\n. - diffs c n)" by (simp add: diffs_def) -lemma sums_Suc_imp: - "(f::nat \ 'a::real_normed_vector) 0 = 0 \ (\n. f (Suc n)) sums s \ (\n. f n) sums s" - using sums_Suc_iff[of f] by simp - lemma diffs_equiv: fixes x :: "'a::{real_normed_vector, ring_1}" shows "summable (\n. diffs c n * x^n) \