diff -r 58ccbc73a172 -r a662e8139804 src/HOL/Multivariate_Analysis/Complex_Transcendental.thy --- a/src/HOL/Multivariate_Analysis/Complex_Transcendental.thy Thu Jul 14 12:21:12 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Complex_Transcendental.thy Thu Jul 14 14:48:49 2016 +0100 @@ -2551,8 +2551,8 @@ then have "cos (Arcsin z) \ 0" by (metis diff_0_right power_zero_numeral sin_squared_eq) then show ?thesis - apply (rule has_complex_derivative_inverse_basic [OF DERIV_sin]) - apply (auto intro: isCont_Arcsin open_ball [of z 1] assms) + apply (rule has_complex_derivative_inverse_basic [OF DERIV_sin _ _ open_ball [of z 1]]) + apply (auto intro: isCont_Arcsin assms) done qed @@ -2716,8 +2716,8 @@ then have "- sin (Arccos z) \ 0" by (metis cos_squared_eq diff_0_right mult_zero_left neg_0_equal_iff_equal power2_eq_square) then have "(Arccos has_field_derivative inverse(- sin(Arccos z))) (at z)" - apply (rule has_complex_derivative_inverse_basic [OF DERIV_cos]) - apply (auto intro: isCont_Arccos open_ball [of z 1] assms) + apply (rule has_complex_derivative_inverse_basic [OF DERIV_cos _ _ open_ball [of z 1]]) + apply (auto intro: isCont_Arccos assms) done then show ?thesis by simp