diff -r ed574b4f7e70 -r a6b1f0cef7b3 src/HOL/HoareParallel/RG_Examples.thy --- a/src/HOL/HoareParallel/RG_Examples.thy Mon Jul 12 19:56:58 2004 +0200 +++ b/src/HOL/HoareParallel/RG_Examples.thy Tue Jul 13 12:32:01 2004 +0200 @@ -206,21 +206,22 @@ lemma Example2_lemma2_aux2: "j\ s \ (\iij \ Suc (\i< n. b i)=(\i< n. (b (j:=1)) i)" -apply(frule_tac b="(b (j:=1))" in Example2_lemma2_aux) -apply(erule_tac t="Summation (b(j := 1)) n" in ssubst) +lemma Example2_lemma2: + "!!b. \j \ Suc (\i< n. b i)=(\i< n. (b (j := Suc 0)) i)" +apply(frule_tac b="(b (j:=(Suc 0)))" in Example2_lemma2_aux) +apply(erule_tac t="setsum (b(j := (Suc 0))) {..n(}" in ssubst) apply(frule_tac b=b in Example2_lemma2_aux) -apply(erule_tac t="Summation b n" in ssubst) -apply(subgoal_tac "Suc (Summation b j + b j + (\iij") - apply(drule_tac b="b" and t=1 in Example2_lemma2_aux2) - apply(rotate_tac -1) - apply(erule ssubst) +apply(erule_tac t="setsum b {..n(}" in ssubst) +apply(subgoal_tac "Suc (setsum b {..j(} + b j + (\iij") + apply(drule_tac b="b" and t="(Suc 0)" in Example2_lemma2_aux2) +apply(rotate_tac -1) +apply(erule ssubst) apply simp_all done