diff -r 9624711ef2de -r a6f5a78712af src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Fri Jan 26 21:16:03 2018 +0100 +++ b/src/HOL/Finite_Set.thy Sat Jan 27 10:27:57 2018 +0100 @@ -485,6 +485,12 @@ lemma finite_UnionD: "finite (\A) \ finite A" by (blast intro: finite_subset [OF subset_Pow_Union]) +lemma finite_bind: + assumes "finite S" + assumes "\x \ S. finite (f x)" + shows "finite (Set.bind S f)" +using assms by (simp add: bind_UNION) + lemma finite_set_of_finite_funs: assumes "finite A" "finite B" shows "finite {f. \x. (x \ A \ f x \ B) \ (x \ A \ f x = d)}" (is "finite ?S")