diff -r d49580620ecb -r a77adb28a27a src/HOL/Library/Indicator_Function.thy --- a/src/HOL/Library/Indicator_Function.thy Thu Jun 16 16:57:36 2016 +0200 +++ b/src/HOL/Library/Indicator_Function.thy Thu Jun 16 17:11:00 2016 +0200 @@ -22,14 +22,14 @@ lemma indicator_abs_le_1: "\indicator S x\ \ (1::'a::linordered_idom)" unfolding indicator_def by auto -lemma indicator_eq_0_iff: "indicator A x = (0::_::zero_neq_one) \ x \ A" +lemma indicator_eq_0_iff: "indicator A x = (0::'a::zero_neq_one) \ x \ A" by (auto simp: indicator_def) -lemma indicator_eq_1_iff: "indicator A x = (1::_::zero_neq_one) \ x \ A" +lemma indicator_eq_1_iff: "indicator A x = (1::'a::zero_neq_one) \ x \ A" by (auto simp: indicator_def) lemma indicator_leI: - "(x \ A \ y \ B) \ (indicator A x :: 'a :: linordered_nonzero_semiring) \ indicator B y" + "(x \ A \ y \ B) \ (indicator A x :: 'a::linordered_nonzero_semiring) \ indicator B y" by (auto simp: indicator_def) lemma split_indicator: "P (indicator S x) \ ((x \ S \ P 1) \ (x \ S \ P 0))" @@ -41,55 +41,60 @@ lemma indicator_inter_arith: "indicator (A \ B) x = indicator A x * (indicator B x::'a::semiring_1)" unfolding indicator_def by (auto simp: min_def max_def) -lemma indicator_union_arith: "indicator (A \ B) x = indicator A x + indicator B x - indicator A x * (indicator B x::'a::ring_1)" +lemma indicator_union_arith: + "indicator (A \ B) x = indicator A x + indicator B x - indicator A x * (indicator B x :: 'a::ring_1)" unfolding indicator_def by (auto simp: min_def max_def) lemma indicator_inter_min: "indicator (A \ B) x = min (indicator A x) (indicator B x::'a::linordered_semidom)" and indicator_union_max: "indicator (A \ B) x = max (indicator A x) (indicator B x::'a::linordered_semidom)" unfolding indicator_def by (auto simp: min_def max_def) -lemma indicator_disj_union: "A \ B = {} \ indicator (A \ B) x = (indicator A x + indicator B x::'a::linordered_semidom)" +lemma indicator_disj_union: + "A \ B = {} \ indicator (A \ B) x = (indicator A x + indicator B x :: 'a::linordered_semidom)" by (auto split: split_indicator) -lemma indicator_compl: "indicator (- A) x = 1 - (indicator A x::'a::ring_1)" - and indicator_diff: "indicator (A - B) x = indicator A x * (1 - indicator B x::'a::ring_1)" +lemma indicator_compl: "indicator (- A) x = 1 - (indicator A x :: 'a::ring_1)" + and indicator_diff: "indicator (A - B) x = indicator A x * (1 - indicator B x ::'a::ring_1)" unfolding indicator_def by (auto simp: min_def max_def) -lemma indicator_times: "indicator (A \ B) x = indicator A (fst x) * (indicator B (snd x)::'a::semiring_1)" +lemma indicator_times: + "indicator (A \ B) x = indicator A (fst x) * (indicator B (snd x) :: 'a::semiring_1)" unfolding indicator_def by (cases x) auto -lemma indicator_sum: "indicator (A <+> B) x = (case x of Inl x \ indicator A x | Inr x \ indicator B x)" +lemma indicator_sum: + "indicator (A <+> B) x = (case x of Inl x \ indicator A x | Inr x \ indicator B x)" unfolding indicator_def by (cases x) auto lemma indicator_image: "inj f \ indicator (f ` X) (f x) = (indicator X x::_::zero_neq_one)" by (auto simp: indicator_def inj_on_def) lemma indicator_vimage: "indicator (f -` A) x = indicator A (f x)" -by(auto split: split_indicator) + by (auto split: split_indicator) -lemma - fixes f :: "'a \ 'b::semiring_1" assumes "finite A" +lemma (* FIXME unnamed!? *) + fixes f :: "'a \ 'b::semiring_1" + assumes "finite A" shows setsum_mult_indicator[simp]: "(\x \ A. f x * indicator B x) = (\x \ A \ B. f x)" - and setsum_indicator_mult[simp]: "(\x \ A. indicator B x * f x) = (\x \ A \ B. f x)" + and setsum_indicator_mult[simp]: "(\x \ A. indicator B x * f x) = (\x \ A \ B. f x)" unfolding indicator_def using assms by (auto intro!: setsum.mono_neutral_cong_right split: if_split_asm) lemma setsum_indicator_eq_card: assumes "finite A" shows "(\x \ A. indicator B x) = card (A Int B)" - using setsum_mult_indicator[OF assms, of "%x. 1::nat"] + using setsum_mult_indicator [OF assms, of "\x. 1::nat"] unfolding card_eq_setsum by simp lemma setsum_indicator_scaleR[simp]: "finite A \ - (\x \ A. indicator (B x) (g x) *\<^sub>R f x) = (\x \ {x\A. g x \ B x}. f x::'a::real_vector)" + (\x \ A. indicator (B x) (g x) *\<^sub>R f x) = (\x \ {x\A. g x \ B x}. f x :: 'a::real_vector)" by (auto intro!: setsum.mono_neutral_cong_right split: if_split_asm simp: indicator_def) lemma LIMSEQ_indicator_incseq: assumes "incseq A" - shows "(\i. indicator (A i) x :: 'a :: {topological_space, one, zero}) \ indicator (\i. A i) x" -proof cases - assume "\i. x \ A i" + shows "(\i. indicator (A i) x :: 'a::{topological_space,one,zero}) \ indicator (\i. A i) x" +proof (cases "\i. x \ A i") + case True then obtain i where "x \ A i" by auto then have @@ -98,10 +103,13 @@ using incseqD[OF \incseq A\, of i "n + i" for n] \x \ A i\ by (auto simp: indicator_def) then show ?thesis by (rule_tac LIMSEQ_offset[of _ i]) simp -qed (auto simp: indicator_def) +next + case False + then show ?thesis by (simp add: indicator_def) +qed lemma LIMSEQ_indicator_UN: - "(\k. indicator (\i indicator (\i. A i) x" + "(\k. indicator (\i indicator (\i. A i) x" proof - have "(\k. indicator (\i indicator (\k. \ii. indicator (A i) x :: 'a :: {topological_space, one, zero}) \ indicator (\i. A i) x" -proof cases - assume "\i. x \ A i" + shows "(\i. indicator (A i) x :: 'a::{topological_space,one,zero}) \ indicator (\i. A i) x" +proof (cases "\i. x \ A i") + case True then obtain i where "x \ A i" by auto then have @@ -123,10 +131,13 @@ using decseqD[OF \decseq A\, of i "n + i" for n] \x \ A i\ by (auto simp: indicator_def) then show ?thesis by (rule_tac LIMSEQ_offset[of _ i]) simp -qed (auto simp: indicator_def) +next + case False + then show ?thesis by (simp add: indicator_def) +qed lemma LIMSEQ_indicator_INT: - "(\k. indicator (\i indicator (\i. A i) x" + "(\k. indicator (\i indicator (\i. A i) x" proof - have "(\k. indicator (\i indicator (\k. \i B \ indicator A x * indicator B x = (indicator A x :: 'a::{comm_semiring_1})" + "A \ B \ indicator A x * indicator B x = (indicator A x :: 'a::comm_semiring_1)" by (auto split: split_indicator simp: fun_eq_iff) lemma indicator_sums: assumes "\i j. i \ j \ A i \ A j = {}" shows "(\i. indicator (A i) x::real) sums indicator (\i. A i) x" -proof cases - assume "\i. x \ A i" +proof (cases "\i. x \ A i") + case True then obtain i where i: "x \ A i" .. with assms have "(\i. indicator (A i) x::real) sums (\i\{i}. indicator (A i) x)" by (intro sums_finite) (auto split: split_indicator) also have "(\i\{i}. indicator (A i) x) = indicator (\i. A i) x" using i by (auto split: split_indicator) finally show ?thesis . -qed simp +next + case False + then show ?thesis by simp +qed text \ - The indicator function of the union of a disjoint family of sets is the + The indicator function of the union of a disjoint family of sets is the sum over all the individual indicators. \ + lemma indicator_UN_disjoint: - assumes "finite A" "disjoint_family_on f A" - shows "indicator (UNION A f) x = (\y\A. indicator (f y) x)" - using assms by (induction A rule: finite_induct) - (auto simp: disjoint_family_on_def indicator_def split: if_splits) + "finite A \ disjoint_family_on f A \ indicator (UNION A f) x = (\y\A. indicator (f y) x)" + by (induct A rule: finite_induct) + (auto simp: disjoint_family_on_def indicator_def split: if_splits) end