diff -r 30d0b2f1df76 -r a79c1080f1e9 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Thu Mar 02 21:16:02 2017 +0100 +++ b/src/HOL/Transcendental.thy Sun Mar 05 10:57:51 2017 +0100 @@ -2694,6 +2694,10 @@ lemma powr_numeral: "0 < x \ x powr (numeral n :: real) = x ^ (numeral n)" by (metis of_nat_numeral powr_realpow) +lemma numeral_powr_numeral[simp]: + "(numeral m :: real) powr (numeral n :: real) = numeral m ^ (numeral n)" +by(simp add: powr_numeral) + lemma powr_real_of_int: "x > 0 \ x powr real_of_int n = (if n \ 0 then x ^ nat n else inverse (x ^ nat (- n)))" using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"] @@ -2755,7 +2759,7 @@ by (simp add: root_powr_inverse ln_powr) lemma ln_sqrt: "0 < x \ ln (sqrt x) = ln x / 2" - by (simp add: ln_powr powr_numeral ln_powr[symmetric] mult.commute) + by (simp add: ln_powr ln_powr[symmetric] mult.commute) lemma log_root: "n > 0 \ a > 0 \ log b (root n a) = log b a / n" by (simp add: log_def ln_root)