diff -r 4bed56dc95fb -r a7fba340058c src/HOL/Set.thy --- a/src/HOL/Set.thy Wed Dec 08 13:34:50 2010 +0100 +++ b/src/HOL/Set.thy Wed Dec 08 13:34:51 2010 +0100 @@ -540,7 +540,7 @@ lemma UNIV_def: "UNIV = {x. True}" - by (simp add: top_fun_eq top_bool_eq Collect_def) + by (simp add: top_fun_def top_bool_def Collect_def) lemma UNIV_I [simp]: "x : UNIV" by (simp add: UNIV_def) @@ -573,7 +573,7 @@ lemma empty_def: "{} = {x. False}" - by (simp add: bot_fun_eq bot_bool_eq Collect_def) + by (simp add: bot_fun_def bot_bool_def Collect_def) lemma empty_iff [simp]: "(c : {}) = False" by (simp add: empty_def) @@ -625,6 +625,7 @@ lemma Pow_not_empty: "Pow A \ {}" using Pow_top by blast + subsubsection {* Set complement *} lemma Compl_iff [simp]: "(c \ -A) = (c \ A)" @@ -649,7 +650,7 @@ subsubsection {* Binary union -- Un *} abbreviation union :: "'a set \ 'a set \ 'a set" (infixl "Un" 65) where - "op Un \ sup" + "union \ sup" notation (xsymbols) union (infixl "\" 65) @@ -659,7 +660,7 @@ lemma Un_def: "A \ B = {x. x \ A \ x \ B}" - by (simp add: sup_fun_eq sup_bool_eq Collect_def mem_def) + by (simp add: sup_fun_def sup_bool_def Collect_def mem_def) lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" by (unfold Un_def) blast @@ -701,7 +702,7 @@ lemma Int_def: "A \ B = {x. x \ A \ x \ B}" - by (simp add: inf_fun_eq inf_bool_eq Collect_def mem_def) + by (simp add: inf_fun_def inf_bool_def Collect_def mem_def) lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" by (unfold Int_def) blast