diff -r f5015dd2431b -r a87d8d31abc0 src/HOL/Set.thy --- a/src/HOL/Set.thy Wed Sep 26 20:27:57 2007 +0200 +++ b/src/HOL/Set.thy Wed Sep 26 20:27:58 2007 +0200 @@ -771,6 +771,15 @@ lemma subset_insert_iff: "(A \ insert x B) = (if x:A then A - {x} \ B else A \ B)" by auto +lemma set_insert: + assumes "x \ A" + obtains B where "A = insert x B" and "x \ B" +proof + from assms show "A = insert x (A - {x})" by blast +next + show "x \ A - {x}" by blast +qed + subsubsection {* Singletons, using insert *}