diff -r e3984606b4b6 -r a88e07c8d0d5 src/HOL/Data_Structures/Tree23_Set.thy --- a/src/HOL/Data_Structures/Tree23_Set.thy Mon Nov 02 11:56:38 2015 +0100 +++ b/src/HOL/Data_Structures/Tree23_Set.thy Mon Nov 02 18:35:30 2015 +0100 @@ -12,7 +12,7 @@ "isin Leaf x = False" | "isin (Node2 l a r) x = (x < a \ isin l x \ x=a \ isin r x)" | "isin (Node3 l a m b r) x = - (x < a \ isin l x \ x = a \ (x < b \ isin m x \ x = b \ isin r x))" + (x < a \ isin l x \ x > b \ isin r x \ x = a \ x = b \ isin m x)" datatype 'a up\<^sub>i = T\<^sub>i "'a tree23" | Up\<^sub>i "'a tree23" 'a "'a tree23" @@ -21,37 +21,38 @@ "tree\<^sub>i (Up\<^sub>i l p r) = Node2 l p r" fun ins :: "'a::linorder \ 'a tree23 \ 'a up\<^sub>i" where -"ins a Leaf = Up\<^sub>i Leaf a Leaf" | -"ins a (Node2 l x r) = - (if a < x then - case ins a l of - T\<^sub>i l' => T\<^sub>i (Node2 l' x r) - | Up\<^sub>i l1 q l2 => T\<^sub>i (Node3 l1 q l2 x r) - else if a=x then T\<^sub>i (Node2 l x r) +"ins x Leaf = Up\<^sub>i Leaf x Leaf" | +"ins x (Node2 l a r) = + (if x < a then + case ins x l of + T\<^sub>i l' => T\<^sub>i (Node2 l' a r) + | Up\<^sub>i l1 b l2 => T\<^sub>i (Node3 l1 b l2 a r) + else if x=a then T\<^sub>i (Node2 l x r) else - case ins a r of - T\<^sub>i r' => T\<^sub>i (Node2 l x r') - | Up\<^sub>i r1 q r2 => T\<^sub>i (Node3 l x r1 q r2))" | -"ins a (Node3 l x1 m x2 r) = - (if a < x1 then - case ins a l of - T\<^sub>i l' => T\<^sub>i (Node3 l' x1 m x2 r) - | Up\<^sub>i l1 q l2 => Up\<^sub>i (Node2 l1 q l2) x1 (Node2 m x2 r) - else if a=x1 then T\<^sub>i (Node3 l x1 m x2 r) - else if a < x2 then - case ins a m of - T\<^sub>i m' => T\<^sub>i (Node3 l x1 m' x2 r) - | Up\<^sub>i m1 q m2 => Up\<^sub>i (Node2 l x1 m1) q (Node2 m2 x2 r) - else if a=x2 then T\<^sub>i (Node3 l x1 m x2 r) - else - case ins a r of - T\<^sub>i r' => T\<^sub>i (Node3 l x1 m x2 r') - | Up\<^sub>i r1 q r2 => Up\<^sub>i (Node2 l x1 m) x2 (Node2 r1 q r2))" + case ins x r of + T\<^sub>i r' => T\<^sub>i (Node2 l a r') + | Up\<^sub>i r1 b r2 => T\<^sub>i (Node3 l a r1 b r2))" | +"ins x (Node3 l a m b r) = + (if x < a then + case ins x l of + T\<^sub>i l' => T\<^sub>i (Node3 l' a m b r) + | Up\<^sub>i l1 c l2 => Up\<^sub>i (Node2 l1 c l2) a (Node2 m b r) + else + if x > b then + case ins x r of + T\<^sub>i r' => T\<^sub>i (Node3 l a m b r') + | Up\<^sub>i r1 c r2 => Up\<^sub>i (Node2 l a m) b (Node2 r1 c r2) + else + if x=a \ x = b then T\<^sub>i (Node3 l a m b r) + else + case ins x m of + T\<^sub>i m' => T\<^sub>i (Node3 l a m' b r) + | Up\<^sub>i m1 c m2 => Up\<^sub>i (Node2 l a m1) c (Node2 m2 b r))" hide_const insert definition insert :: "'a::linorder \ 'a tree23 \ 'a tree23" where -"insert a t = tree\<^sub>i(ins a t)" +"insert x t = tree\<^sub>i(ins x t)" datatype 'a up\<^sub>d = T\<^sub>d "'a tree23" | Up\<^sub>d "'a tree23" @@ -94,21 +95,21 @@ fun del :: "'a::linorder \ 'a tree23 \ 'a up\<^sub>d" where -"del k Leaf = T\<^sub>d Leaf" | -"del k (Node2 Leaf p Leaf) = (if k=p then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf p Leaf))" | -"del k (Node3 Leaf p Leaf q Leaf) = T\<^sub>d(if k=p then Node2 Leaf q Leaf - else if k=q then Node2 Leaf p Leaf else Node3 Leaf p Leaf q Leaf)" | -"del k (Node2 l a r) = (if k a then node22 l a (del k r) else +"del x Leaf = T\<^sub>d Leaf" | +"del x (Node2 Leaf a Leaf) = (if x = a then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf a Leaf))" | +"del x (Node3 Leaf a Leaf b Leaf) = T\<^sub>d(if x = a then Node2 Leaf b Leaf + else if x = b then Node2 Leaf a Leaf else Node3 Leaf a Leaf b Leaf)" | +"del x (Node2 l a r) = (if x a then node22 l a (del x r) else let (a',t) = del_min r in node22 l a' t)" | -"del k (Node3 l a m b r) = (if k 'a tree23 \ 'a tree23" where -"delete k t = tree\<^sub>d(del k t)" +"delete x t = tree\<^sub>d(del x t)" subsection "Functional Correctness" @@ -127,7 +128,7 @@ lemma inorder_ins: "sorted(inorder t) \ inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)" -by(induction t) (auto simp: ins_list_simps split: up\<^sub>i.splits) +by(induction t) (auto simp: ins_list_simps split: up\<^sub>i.splits) (* 38 secs in 2015 *) lemma inorder_insert: "sorted(inorder t) \ inorder(insert a t) = ins_list a (inorder t)" @@ -194,7 +195,7 @@ end lemma bal_ins: "bal t \ bal (tree\<^sub>i(ins a t)) \ height(ins a t) = height t" -by (induct t) (auto split: up\<^sub>i.split) (* 25 secs in 2015 *) +by (induct t) (auto split: up\<^sub>i.split) (* 87 secs in 2015 *) text{* Now an alternative proof (by Brian Huffman) that runs faster because two properties (balance and height) are combined in one predicate. *}