diff -r 29cf40fe8daf -r a89b4bc311a5 src/HOL/UNITY/SubstAx.thy --- a/src/HOL/UNITY/SubstAx.thy Sun Nov 20 20:59:30 2011 +0100 +++ b/src/HOL/UNITY/SubstAx.thy Sun Nov 20 21:05:23 2011 +0100 @@ -42,10 +42,10 @@ Int_assoc [symmetric]) (* [| F \ Always C; F \ (C \ A) LeadsTo A' |] ==> F \ A LeadsTo A' *) -lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1, standard] +lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1] (* [| F \ Always INV; F \ A LeadsTo A' |] ==> F \ A LeadsTo (INV \ A') *) -lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2, standard] +lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2] subsection{*Introduction rules: Basis, Trans, Union*} @@ -104,7 +104,7 @@ apply (blast intro: subset_imp_leadsTo) done -lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, standard, simp] +lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, simp] lemma LeadsTo_weaken_R: "[| F \ A LeadsTo A'; A' \ B' |] ==> F \ A LeadsTo B'"