diff -r a962f349c8c9 -r a95e7432d86c src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Wed Jul 06 14:09:13 2016 +0200 +++ b/src/HOL/Finite_Set.thy Wed Jul 06 20:19:51 2016 +0200 @@ -16,9 +16,9 @@ begin inductive finite :: "'a set \ bool" - where - emptyI [simp, intro!]: "finite {}" - | insertI [simp, intro!]: "finite A \ finite (insert a A)" +where + emptyI [simp, intro!]: "finite {}" +| insertI [simp, intro!]: "finite A \ finite (insert a A)" end @@ -32,14 +32,16 @@ assumes "P {}" and insert: "\x F. finite F \ x \ F \ P F \ P (insert x F)" shows "P F" -using \finite F\ + using \finite F\ proof induct show "P {}" by fact - fix x F assume F: "finite F" and P: "P F" +next + fix x F + assume F: "finite F" and P: "P F" show "P (insert x F)" proof cases assume "x \ F" - hence "insert x F = F" by (rule insert_absorb) + then have "insert x F = F" by (rule insert_absorb) with P show ?thesis by (simp only:) next assume "x \ F" @@ -49,13 +51,15 @@ lemma infinite_finite_induct [case_names infinite empty insert]: assumes infinite: "\A. \ finite A \ P A" - assumes empty: "P {}" - assumes insert: "\x F. finite F \ x \ F \ P F \ P (insert x F)" + and empty: "P {}" + and insert: "\x F. finite F \ x \ F \ P F \ P (insert x F)" shows "P A" proof (cases "finite A") - case False with infinite show ?thesis . + case False + with infinite show ?thesis . next - case True then show ?thesis by (induct A) (fact empty insert)+ + case True + then show ?thesis by (induct A) (fact empty insert)+ qed @@ -71,16 +75,18 @@ text \A finite choice principle. Does not need the SOME choice operator.\ -lemma finite_set_choice: - "finite A \ \x\A. \y. P x y \ \f. \x\A. P x (f x)" +lemma finite_set_choice: "finite A \ \x\A. \y. P x y \ \f. \x\A. P x (f x)" proof (induct rule: finite_induct) - case empty then show ?case by simp + case empty + then show ?case by simp next case (insert a A) - then obtain f b where f: "ALL x:A. P x (f x)" and ab: "P a b" by auto - show ?case (is "EX f. ?P f") + then obtain f b where f: "\x\A. P x (f x)" and ab: "P a b" + by auto + show ?case (is "\f. ?P f") proof - show "?P(%x. if x = a then b else f x)" using f ab by auto + show "?P (\x. if x = a then b else f x)" + using f ab by auto qed qed @@ -88,100 +94,101 @@ subsubsection \Finite sets are the images of initial segments of natural numbers\ lemma finite_imp_nat_seg_image_inj_on: - assumes "finite A" + assumes "finite A" shows "\(n::nat) f. A = f ` {i. i < n} \ inj_on f {i. i < n}" -using assms + using assms proof induct case empty show ?case proof - show "\f. {} = f ` {i::nat. i < 0} \ inj_on f {i. i < 0}" by simp + show "\f. {} = f ` {i::nat. i < 0} \ inj_on f {i. i < 0}" + by simp qed next case (insert a A) have notinA: "a \ A" by fact - from insert.hyps obtain n f - where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}" by blast - hence "insert a A = f(n:=a) ` {i. i < Suc n}" - "inj_on (f(n:=a)) {i. i < Suc n}" using notinA - by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq) - thus ?case by blast + from insert.hyps obtain n f where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}" + by blast + then have "insert a A = f(n:=a) ` {i. i < Suc n}" and "inj_on (f(n:=a)) {i. i < Suc n}" + using notinA by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq) + then show ?case by blast qed -lemma nat_seg_image_imp_finite: - "A = f ` {i::nat. i < n} \ finite A" +lemma nat_seg_image_imp_finite: "A = f ` {i::nat. i < n} \ finite A" proof (induct n arbitrary: A) - case 0 thus ?case by simp + case 0 + then show ?case by simp next case (Suc n) let ?B = "f ` {i. i < n}" - have finB: "finite ?B" by(rule Suc.hyps[OF refl]) + have finB: "finite ?B" by (rule Suc.hyps[OF refl]) show ?case - proof cases - assume "\kk(\ k (\(n::nat) f. A = f ` {i::nat. i < n})" +lemma finite_conv_nat_seg_image: "finite A \ (\(n::nat) f. A = f ` {i::nat. i < n})" by (blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on) lemma finite_imp_inj_to_nat_seg: assumes "finite A" shows "\f n::nat. f ` A = {i. i < n} \ inj_on f A" proof - - from finite_imp_nat_seg_image_inj_on[OF \finite A\] + from finite_imp_nat_seg_image_inj_on [OF \finite A\] obtain f and n::nat where bij: "bij_betw f {i. i ?f ` A = {i. i k}" +lemma finite_Collect_le_nat [iff]: "finite {n::nat. n \ k}" by (simp add: le_eq_less_or_eq Collect_disj_eq) subsubsection \Finiteness and common set operations\ -lemma rev_finite_subset: - "finite B \ A \ B \ finite A" +lemma rev_finite_subset: "finite B \ A \ B \ finite A" proof (induct arbitrary: A rule: finite_induct) case empty then show ?case by simp next case (insert x F A) - have A: "A \ insert x F" and r: "A - {x} \ F \ finite (A - {x})" by fact+ + have A: "A \ insert x F" and r: "A - {x} \ F \ finite (A - {x})" + by fact+ show "finite A" proof cases assume x: "x \ A" with A have "A - {x} \ F" by (simp add: subset_insert_iff) with r have "finite (A - {x})" . - hence "finite (insert x (A - {x}))" .. - also have "insert x (A - {x}) = A" using x by (rule insert_Diff) + then have "finite (insert x (A - {x}))" .. + also have "insert x (A - {x}) = A" + using x by (rule insert_Diff) finally show ?thesis . next show ?thesis when "A \ F" using that by fact assume "x \ A" - with A show "A \ F" by (simp add: subset_insert_iff) + with A show "A \ F" + by (simp add: subset_insert_iff) qed qed -lemma finite_subset: - "A \ B \ finite B \ finite A" +lemma finite_subset: "A \ B \ finite B \ finite A" by (rule rev_finite_subset) lemma finite_UnI: @@ -189,8 +196,7 @@ shows "finite (F \ G)" using assms by induct simp_all -lemma finite_Un [iff]: - "finite (F \ G) \ finite F \ finite G" +lemma finite_Un [iff]: "finite (F \ G) \ finite F \ finite G" by (blast intro: finite_UnI finite_subset [of _ "F \ G"]) lemma finite_insert [simp]: "finite (insert a A) \ finite A" @@ -200,8 +206,7 @@ then show ?thesis by simp qed -lemma finite_Int [simp, intro]: - "finite F \ finite G \ finite (F \ G)" +lemma finite_Int [simp, intro]: "finite F \ finite G \ finite (F \ G)" by (blast intro: finite_subset) lemma finite_Collect_conjI [simp, intro]: @@ -212,112 +217,110 @@ "finite {x. P x \ Q x} \ finite {x. P x} \ finite {x. Q x}" by (simp add: Collect_disj_eq) -lemma finite_Diff [simp, intro]: - "finite A \ finite (A - B)" +lemma finite_Diff [simp, intro]: "finite A \ finite (A - B)" by (rule finite_subset, rule Diff_subset) lemma finite_Diff2 [simp]: assumes "finite B" shows "finite (A - B) \ finite A" proof - - have "finite A \ finite((A - B) \ (A \ B))" by (simp add: Un_Diff_Int) - also have "\ \ finite (A - B)" using \finite B\ by simp + have "finite A \ finite ((A - B) \ (A \ B))" + by (simp add: Un_Diff_Int) + also have "\ \ finite (A - B)" + using \finite B\ by simp finally show ?thesis .. qed -lemma finite_Diff_insert [iff]: - "finite (A - insert a B) \ finite (A - B)" +lemma finite_Diff_insert [iff]: "finite (A - insert a B) \ finite (A - B)" proof - have "finite (A - B) \ finite (A - B - {a})" by simp moreover have "A - insert a B = A - B - {a}" by auto ultimately show ?thesis by simp qed -lemma finite_compl[simp]: +lemma finite_compl [simp]: "finite (A :: 'a set) \ finite (- A) \ finite (UNIV :: 'a set)" by (simp add: Compl_eq_Diff_UNIV) -lemma finite_Collect_not[simp]: +lemma finite_Collect_not [simp]: "finite {x :: 'a. P x} \ finite {x. \ P x} \ finite (UNIV :: 'a set)" by (simp add: Collect_neg_eq) lemma finite_Union [simp, intro]: - "finite A \ (\M. M \ A \ finite M) \ finite(\A)" + "finite A \ (\M. M \ A \ finite M) \ finite (\A)" by (induct rule: finite_induct) simp_all lemma finite_UN_I [intro]: "finite A \ (\a. a \ A \ finite (B a)) \ finite (\a\A. B a)" by (induct rule: finite_induct) simp_all -lemma finite_UN [simp]: - "finite A \ finite (UNION A B) \ (\x\A. finite (B x))" +lemma finite_UN [simp]: "finite A \ finite (UNION A B) \ (\x\A. finite (B x))" by (blast intro: finite_subset) -lemma finite_Inter [intro]: - "\A\M. finite A \ finite (\M)" +lemma finite_Inter [intro]: "\A\M. finite A \ finite (\M)" by (blast intro: Inter_lower finite_subset) -lemma finite_INT [intro]: - "\x\I. finite (A x) \ finite (\x\I. A x)" +lemma finite_INT [intro]: "\x\I. finite (A x) \ finite (\x\I. A x)" by (blast intro: INT_lower finite_subset) -lemma finite_imageI [simp, intro]: - "finite F \ finite (h ` F)" +lemma finite_imageI [simp, intro]: "finite F \ finite (h ` F)" by (induct rule: finite_induct) simp_all -lemma finite_image_set [simp]: - "finite {x. P x} \ finite { f x | x. P x }" +lemma finite_image_set [simp]: "finite {x. P x} \ finite {f x |x. P x}" by (simp add: image_Collect [symmetric]) lemma finite_image_set2: - "finite {x. P x} \ finite {y. Q y} \ finite {f x y | x y. P x \ Q y}" + "finite {x. P x} \ finite {y. Q y} \ finite {f x y |x y. P x \ Q y}" by (rule finite_subset [where B = "\x \ {x. P x}. \y \ {y. Q y}. {f x y}"]) auto lemma finite_imageD: assumes "finite (f ` A)" and "inj_on f A" shows "finite A" -using assms + using assms proof (induct "f ` A" arbitrary: A) - case empty then show ?case by simp + case empty + then show ?case by simp next case (insert x B) - then have B_A: "insert x B = f ` A" by simp - then obtain y where "x = f y" and "y \ A" by blast - from B_A \x \ B\ have "B = f ` A - {x}" by blast - with B_A \x \ B\ \x = f y\ \inj_on f A\ \y \ A\ have "B = f ` (A - {y})" + then have B_A: "insert x B = f ` A" + by simp + then obtain y where "x = f y" and "y \ A" + by blast + from B_A \x \ B\ have "B = f ` A - {x}" + by blast + with B_A \x \ B\ \x = f y\ \inj_on f A\ \y \ A\ have "B = f ` (A - {y})" by (simp add: inj_on_image_set_diff Set.Diff_subset) - moreover from \inj_on f A\ have "inj_on f (A - {y})" by (rule inj_on_diff) - ultimately have "finite (A - {y})" by (rule insert.hyps) - then show "finite A" by simp + moreover from \inj_on f A\ have "inj_on f (A - {y})" + by (rule inj_on_diff) + ultimately have "finite (A - {y})" + by (rule insert.hyps) + then show "finite A" + by simp qed -lemma finite_image_iff: - assumes "inj_on f A" - shows "finite (f ` A) \ finite A" -using assms finite_imageD by blast +lemma finite_image_iff: "inj_on f A \ finite (f ` A) \ finite A" + using finite_imageD by blast -lemma finite_surj: - "finite A \ B \ f ` A \ finite B" +lemma finite_surj: "finite A \ B \ f ` A \ finite B" by (erule finite_subset) (rule finite_imageI) -lemma finite_range_imageI: - "finite (range g) \ finite (range (\x. f (g x)))" +lemma finite_range_imageI: "finite (range g) \ finite (range (\x. f (g x)))" by (drule finite_imageI) (simp add: range_composition) lemma finite_subset_image: assumes "finite B" shows "B \ f ` A \ \C\A. finite C \ B = f ` C" -using assms + using assms proof induct - case empty then show ?case by simp + case empty + then show ?case by simp next - case insert then show ?case - by (clarsimp simp del: image_insert simp add: image_insert [symmetric]) - blast + case insert + then show ?case + by (clarsimp simp del: image_insert simp add: image_insert [symmetric]) blast qed -lemma finite_vimage_IntI: - "finite F \ inj_on h A \ finite (h -` F \ A)" +lemma finite_vimage_IntI: "finite F \ inj_on h A \ finite (h -` F \ A)" apply (induct rule: finite_induct) apply simp_all apply (subst vimage_insert) @@ -334,15 +337,14 @@ by (simp only: * assms finite_UN_I) qed -lemma finite_vimageI: - "finite F \ inj h \ finite (h -` F)" +lemma finite_vimageI: "finite F \ inj h \ finite (h -` F)" using finite_vimage_IntI[of F h UNIV] by auto -lemma finite_vimageD': "\ finite (f -` A); A \ range f \ \ finite A" -by(auto simp add: subset_image_iff intro: finite_subset[rotated]) +lemma finite_vimageD': "finite (f -` A) \ A \ range f \ finite A" + by (auto simp add: subset_image_iff intro: finite_subset[rotated]) -lemma finite_vimageD: "\ finite (h -` F); surj h \ \ finite F" -by(auto dest: finite_vimageD') +lemma finite_vimageD: "finite (h -` F) \ surj h \ finite F" + by (auto dest: finite_vimageD') lemma finite_vimage_iff: "bij h \ finite (h -` F) \ finite F" unfolding bij_def by (auto elim: finite_vimageD finite_vimageI) @@ -359,30 +361,36 @@ assumes "finite {y. P y}" shows "finite {x. \y. P y \ Q x y} \ (\y. P y \ finite {x. Q x y})" proof - - have "{x. EX y. P y & Q x y} = (\y\{y. P y}. {x. Q x y})" by auto - with assms show ?thesis by simp + have "{x. \y. P y \ Q x y} = (\y\{y. P y}. {x. Q x y})" + by auto + with assms show ?thesis + by simp qed -lemma finite_Plus: - "finite A \ finite B \ finite (A <+> B)" +lemma finite_Plus: "finite A \ finite B \ finite (A <+> B)" by (simp add: Plus_def) -lemma finite_PlusD: +lemma finite_PlusD: fixes A :: "'a set" and B :: "'b set" assumes fin: "finite (A <+> B)" shows "finite A" "finite B" proof - - have "Inl ` A \ A <+> B" by auto - then have "finite (Inl ` A :: ('a + 'b) set)" using fin by (rule finite_subset) - then show "finite A" by (rule finite_imageD) (auto intro: inj_onI) + have "Inl ` A \ A <+> B" + by auto + then have "finite (Inl ` A :: ('a + 'b) set)" + using fin by (rule finite_subset) + then show "finite A" + by (rule finite_imageD) (auto intro: inj_onI) next - have "Inr ` B \ A <+> B" by auto - then have "finite (Inr ` B :: ('a + 'b) set)" using fin by (rule finite_subset) - then show "finite B" by (rule finite_imageD) (auto intro: inj_onI) + have "Inr ` B \ A <+> B" + by auto + then have "finite (Inr ` B :: ('a + 'b) set)" + using fin by (rule finite_subset) + then show "finite B" + by (rule finite_imageD) (auto intro: inj_onI) qed -lemma finite_Plus_iff [simp]: - "finite (A <+> B) \ finite A \ finite B" +lemma finite_Plus_iff [simp]: "finite (A <+> B) \ finite A \ finite B" by (auto intro: finite_PlusD finite_Plus) lemma finite_Plus_UNIV_iff [simp]: @@ -390,21 +398,22 @@ by (subst UNIV_Plus_UNIV [symmetric]) (rule finite_Plus_iff) lemma finite_SigmaI [simp, intro]: - "finite A \ (\a. a\A \ finite (B a)) ==> finite (SIGMA a:A. B a)" - by (unfold Sigma_def) blast + "finite A \ (\a. a\A \ finite (B a)) \ finite (SIGMA a:A. B a)" + unfolding Sigma_def by blast lemma finite_SigmaI2: assumes "finite {x\A. B x \ {}}" and "\a. a \ A \ finite (B a)" shows "finite (Sigma A B)" proof - - from assms have "finite (Sigma {x\A. B x \ {}} B)" by auto - also have "Sigma {x:A. B x \ {}} B = Sigma A B" by auto + from assms have "finite (Sigma {x\A. B x \ {}} B)" + by auto + also have "Sigma {x:A. B x \ {}} B = Sigma A B" + by auto finally show ?thesis . qed -lemma finite_cartesian_product: - "finite A \ finite B \ finite (A \ B)" +lemma finite_cartesian_product: "finite A \ finite B \ finite (A \ B)" by (rule finite_SigmaI) lemma finite_Prod_UNIV: @@ -417,10 +426,12 @@ proof - from assms obtain n f where "A \ B = f ` {i::nat. i < n}" by (auto simp add: finite_conv_nat_seg_image) - then have "fst ` (A \ B) = fst ` f ` {i::nat. i < n}" by simp + then have "fst ` (A \ B) = fst ` f ` {i::nat. i < n}" + by simp with \B \ {}\ have "A = (fst \ f) ` {i::nat. i < n}" by (simp add: image_comp) - then have "\n f. A = f ` {i::nat. i < n}" by blast + then have "\n f. A = f ` {i::nat. i < n}" + by blast then show ?thesis by (auto simp add: finite_conv_nat_seg_image) qed @@ -431,10 +442,12 @@ proof - from assms obtain n f where "A \ B = f ` {i::nat. i < n}" by (auto simp add: finite_conv_nat_seg_image) - then have "snd ` (A \ B) = snd ` f ` {i::nat. i < n}" by simp + then have "snd ` (A \ B) = snd ` f ` {i::nat. i < n}" + by simp with \A \ {}\ have "B = (snd \ f) ` {i::nat. i < n}" by (simp add: image_comp) - then have "\n f. B = f ` {i::nat. i < n}" by blast + then have "\n f. B = f ` {i::nat. i < n}" + by blast then show ?thesis by (auto simp add: finite_conv_nat_seg_image) qed @@ -443,48 +456,52 @@ "finite (A \ B) \ (A = {} \ B = {} \ (finite A \ finite B))" by (auto dest: finite_cartesian_productD1 finite_cartesian_productD2 finite_cartesian_product) -lemma finite_prod: +lemma finite_prod: "finite (UNIV :: ('a \ 'b) set) \ finite (UNIV :: 'a set) \ finite (UNIV :: 'b set)" using finite_cartesian_product_iff[of UNIV UNIV] by simp -lemma finite_Pow_iff [iff]: - "finite (Pow A) \ finite A" +lemma finite_Pow_iff [iff]: "finite (Pow A) \ finite A" proof assume "finite (Pow A)" - then have "finite ((%x. {x}) ` A)" by (blast intro: finite_subset) - then show "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp + then have "finite ((\x. {x}) ` A)" + by (blast intro: finite_subset) + then show "finite A" + by (rule finite_imageD [unfolded inj_on_def]) simp next assume "finite A" then show "finite (Pow A)" by induct (simp_all add: Pow_insert) qed -corollary finite_Collect_subsets [simp, intro]: - "finite A \ finite {B. B \ A}" +corollary finite_Collect_subsets [simp, intro]: "finite A \ finite {B. B \ A}" by (simp add: Pow_def [symmetric]) lemma finite_set: "finite (UNIV :: 'a set set) \ finite (UNIV :: 'a set)" -by(simp only: finite_Pow_iff Pow_UNIV[symmetric]) + by (simp only: finite_Pow_iff Pow_UNIV[symmetric]) -lemma finite_UnionD: "finite(\A) \ finite A" +lemma finite_UnionD: "finite (\A) \ finite A" by (blast intro: finite_subset [OF subset_Pow_Union]) -lemma finite_set_of_finite_funs: assumes "finite A" "finite B" -shows "finite{f. \x. (x \ A \ f x \ B) \ (x \ A \ f x = d)}" (is "finite ?S") -proof- +lemma finite_set_of_finite_funs: + assumes "finite A" "finite B" + shows "finite {f. \x. (x \ A \ f x \ B) \ (x \ A \ f x = d)}" (is "finite ?S") +proof - let ?F = "\f. {(a,b). a \ A \ b = f a}" - have "?F ` ?S \ Pow(A \ B)" by auto - from finite_subset[OF this] assms have 1: "finite (?F ` ?S)" by simp + have "?F ` ?S \ Pow(A \ B)" + by auto + from finite_subset[OF this] assms have 1: "finite (?F ` ?S)" + by simp have 2: "inj_on ?F ?S" - by(fastforce simp add: inj_on_def set_eq_iff fun_eq_iff) - show ?thesis by(rule finite_imageD[OF 1 2]) + by (fastforce simp add: inj_on_def set_eq_iff fun_eq_iff) + show ?thesis + by (rule finite_imageD [OF 1 2]) qed lemma not_finite_existsD: assumes "\ finite {a. P a}" shows "\a. P a" proof (rule classical) - assume "\ (\a. P a)" + assume "\ ?thesis" with assms show ?thesis by auto qed @@ -496,11 +513,13 @@ assumes "\x. P {x}" and "\x F. finite F \ F \ {} \ x \ F \ P F \ P (insert x F)" shows "P F" -using assms + using assms proof induct - case empty then show ?case by simp + case empty + then show ?case by simp next - case (insert x F) then show ?case by cases auto + case (insert x F) + then show ?case by cases auto qed lemma finite_subset_induct [consumes 2, case_names empty insert]: @@ -508,13 +527,12 @@ assumes empty: "P {}" and insert: "\a F. finite F \ a \ A \ a \ F \ P F \ P (insert a F)" shows "P F" -using \finite F\ \F \ A\ + using \finite F\ \F \ A\ proof induct show "P {}" by fact next fix x F - assume "finite F" and "x \ F" and - P: "F \ A \ P F" and i: "insert x F \ A" + assume "finite F" and "x \ F" and P: "F \ A \ P F" and i: "insert x F \ A" show "P (insert x F)" proof (rule insert) from i show "x \ A" by blast @@ -531,11 +549,10 @@ and remove: "\a A. finite A \ a \ A \ P A \ P (A - {a})" shows "P {}" proof - - have "\B. B \ A \ P (A - B)" + have "P (A - B)" if "B \ A" for B :: "'a set" proof - - fix B :: "'a set" - assume "B \ A" - with \finite A\ have "finite B" by (rule rev_finite_subset) + from \finite A\ that have "finite B" + by (rule rev_finite_subset) from this \B \ A\ show "P (A - B)" proof induct case empty @@ -544,11 +561,15 @@ case (insert b B) have "P (A - B - {b})" proof (rule remove) - from \finite A\ show "finite (A - B)" by induct auto - from insert show "b \ A - B" by simp - from insert show "P (A - B)" by simp + from \finite A\ show "finite (A - B)" + by induct auto + from insert show "b \ A - B" + by simp + from insert show "P (A - B)" + by simp qed - also have "A - B - {b} = A - insert b B" by (rule Diff_insert [symmetric]) + also have "A - B - {b} = A - insert b B" + by (rule Diff_insert [symmetric]) finally show ?case . qed qed @@ -558,11 +579,13 @@ lemma finite_update_induct [consumes 1, case_names const update]: assumes finite: "finite {a. f a \ c}" - assumes const: "P (\a. c)" - assumes update: "\a b f. finite {a. f a \ c} \ f a = c \ b \ c \ P f \ P (f(a := b))" + and const: "P (\a. c)" + and update: "\a b f. finite {a. f a \ c} \ f a = c \ b \ c \ P f \ P (f(a := b))" shows "P f" -using finite proof (induct "{a. f a \ c}" arbitrary: f) - case empty with const show ?case by simp + using finite +proof (induct "{a. f a \ c}" arbitrary: f) + case empty + with const show ?case by simp next case (insert a A) then have "A = {a'. (f(a := c)) a' \ c}" and "f a \ c" @@ -573,7 +596,8 @@ by simp from insert \A = {a'. (f(a := c)) a' \ c}\ have "P (f(a := c))" by simp - with \finite {a'. (f(a := c)) a' \ c}\ \(f(a := c)) a = c\ \f a \ c\ have "P ((f(a := c))(a := f a))" + with \finite {a'. (f(a := c)) a' \ c}\ \(f(a := c)) a = c\ \f a \ c\ + have "P ((f(a := c))(a := f a))" by (rule update) then show ?case by simp qed @@ -581,8 +605,7 @@ subsection \Class \finite\\ -class finite = - assumes finite_UNIV: "finite (UNIV :: 'a set)" +class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin lemma finite [simp]: "finite (A :: 'a set)" @@ -596,20 +619,22 @@ instance prod :: (finite, finite) finite by standard (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite) -lemma inj_graph: "inj (%f. {(x, y). y = f x})" - by (rule inj_onI, auto simp add: set_eq_iff fun_eq_iff) +lemma inj_graph: "inj (\f. {(x, y). y = f x})" + by (rule inj_onI) (auto simp add: set_eq_iff fun_eq_iff) instance "fun" :: (finite, finite) finite proof - show "finite (UNIV :: ('a => 'b) set)" + show "finite (UNIV :: ('a \ 'b) set)" proof (rule finite_imageD) - let ?graph = "%f::'a => 'b. {(x, y). y = f x}" - have "range ?graph \ Pow UNIV" by simp + let ?graph = "\f::'a \ 'b. {(x, y). y = f x}" + have "range ?graph \ Pow UNIV" + by simp moreover have "finite (Pow (UNIV :: ('a * 'b) set))" by (simp only: finite_Pow_iff finite) ultimately show "finite (range ?graph)" by (rule finite_subset) - show "inj ?graph" by (rule inj_graph) + show "inj ?graph" + by (rule inj_graph) qed qed @@ -629,8 +654,8 @@ subsection \A basic fold functional for finite sets\ text \The intended behaviour is -\fold f z {x\<^sub>1, ..., x\<^sub>n} = f x\<^sub>1 (\ (f x\<^sub>n z)\)\ -if \f\ is ``left-commutative'': + \fold f z {x\<^sub>1, \, x\<^sub>n} = f x\<^sub>1 (\ (f x\<^sub>n z)\)\ + if \f\ is ``left-commutative'': \ locale comp_fun_commute = @@ -641,34 +666,35 @@ lemma fun_left_comm: "f y (f x z) = f x (f y z)" using comp_fun_commute by (simp add: fun_eq_iff) -lemma commute_left_comp: - "f y \ (f x \ g) = f x \ (f y \ g)" +lemma commute_left_comp: "f y \ (f x \ g) = f x \ (f y \ g)" by (simp add: o_assoc comp_fun_commute) end inductive fold_graph :: "('a \ 'b \ 'b) \ 'b \ 'a set \ 'b \ bool" -for f :: "'a \ 'b \ 'b" and z :: 'b where - emptyI [intro]: "fold_graph f z {} z" | - insertI [intro]: "x \ A \ fold_graph f z A y - \ fold_graph f z (insert x A) (f x y)" + for f :: "'a \ 'b \ 'b" and z :: 'b +where + emptyI [intro]: "fold_graph f z {} z" +| insertI [intro]: "x \ A \ fold_graph f z A y \ fold_graph f z (insert x A) (f x y)" inductive_cases empty_fold_graphE [elim!]: "fold_graph f z {} x" -definition fold :: "('a \ 'b \ 'b) \ 'b \ 'a set \ 'b" where - "fold f z A = (if finite A then (THE y. fold_graph f z A y) else z)" +definition fold :: "('a \ 'b \ 'b) \ 'b \ 'a set \ 'b" + where "fold f z A = (if finite A then (THE y. fold_graph f z A y) else z)" -text\A tempting alternative for the definiens is -@{term "if finite A then THE y. fold_graph f z A y else e"}. -It allows the removal of finiteness assumptions from the theorems -\fold_comm\, \fold_reindex\ and \fold_distrib\. -The proofs become ugly. It is not worth the effort. (???)\ +text \ + A tempting alternative for the definiens is + @{term "if finite A then THE y. fold_graph f z A y else e"}. + It allows the removal of finiteness assumptions from the theorems + \fold_comm\, \fold_reindex\ and \fold_distrib\. + The proofs become ugly. It is not worth the effort. (???) +\ lemma finite_imp_fold_graph: "finite A \ \x. fold_graph f z A x" -by (induct rule: finite_induct) auto + by (induct rule: finite_induct) auto -subsubsection\From @{const fold_graph} to @{term fold}\ +subsubsection \From @{const fold_graph} to @{term fold}\ context comp_fun_commute begin @@ -681,11 +707,16 @@ lemma fold_graph_insertE_aux: "fold_graph f z A y \ a \ A \ \y'. y = f a y' \ fold_graph f z (A - {a}) y'" proof (induct set: fold_graph) - case (insertI x A y) show ?case + case emptyI + then show ?case by simp +next + case (insertI x A y) + show ?case proof (cases "x = a") - assume "x = a" with insertI show ?case by auto + case True + with insertI show ?thesis by auto next - assume "x \ a" + case False then obtain y' where y: "y = f a y'" and y': "fold_graph f z (A - {a}) y'" using insertI by auto have "f x y = f a (f x y')" @@ -693,86 +724,96 @@ moreover have "fold_graph f z (insert x A - {a}) (f x y')" using y' and \x \ a\ and \x \ A\ by (simp add: insert_Diff_if fold_graph.insertI) - ultimately show ?case by fast + ultimately show ?thesis + by fast qed -qed simp +qed lemma fold_graph_insertE: assumes "fold_graph f z (insert x A) v" and "x \ A" obtains y where "v = f x y" and "fold_graph f z A y" -using assms by (auto dest: fold_graph_insertE_aux [OF _ insertI1]) + using assms by (auto dest: fold_graph_insertE_aux [OF _ insertI1]) -lemma fold_graph_determ: - "fold_graph f z A x \ fold_graph f z A y \ y = x" +lemma fold_graph_determ: "fold_graph f z A x \ fold_graph f z A y \ y = x" proof (induct arbitrary: y set: fold_graph) + case emptyI + then show ?case by fast +next case (insertI x A y v) from \fold_graph f z (insert x A) v\ and \x \ A\ obtain y' where "v = f x y'" and "fold_graph f z A y'" by (rule fold_graph_insertE) - from \fold_graph f z A y'\ have "y' = y" by (rule insertI) - with \v = f x y'\ show "v = f x y" by simp -qed fast + from \fold_graph f z A y'\ have "y' = y" + by (rule insertI) + with \v = f x y'\ show "v = f x y" + by simp +qed -lemma fold_equality: - "fold_graph f z A y \ fold f z A = y" +lemma fold_equality: "fold_graph f z A y \ fold f z A = y" by (cases "finite A") (auto simp add: fold_def intro: fold_graph_determ dest: fold_graph_finite) lemma fold_graph_fold: assumes "finite A" shows "fold_graph f z A (fold f z A)" proof - - from assms have "\x. fold_graph f z A x" by (rule finite_imp_fold_graph) + from assms have "\x. fold_graph f z A x" + by (rule finite_imp_fold_graph) moreover note fold_graph_determ - ultimately have "\!x. fold_graph f z A x" by (rule ex_ex1I) - then have "fold_graph f z A (The (fold_graph f z A))" by (rule theI') - with assms show ?thesis by (simp add: fold_def) + ultimately have "\!x. fold_graph f z A x" + by (rule ex_ex1I) + then have "fold_graph f z A (The (fold_graph f z A))" + by (rule theI') + with assms show ?thesis + by (simp add: fold_def) qed text \The base case for \fold\:\ -lemma (in -) fold_infinite [simp]: - assumes "\ finite A" - shows "fold f z A = z" - using assms by (auto simp add: fold_def) +lemma (in -) fold_infinite [simp]: "\ finite A \ fold f z A = z" + by (auto simp: fold_def) -lemma (in -) fold_empty [simp]: - "fold f z {} = z" - by (auto simp add: fold_def) +lemma (in -) fold_empty [simp]: "fold f z {} = z" + by (auto simp: fold_def) -text\The various recursion equations for @{const fold}:\ +text \The various recursion equations for @{const fold}:\ lemma fold_insert [simp]: assumes "finite A" and "x \ A" shows "fold f z (insert x A) = f x (fold f z A)" proof (rule fold_equality) fix z - from \finite A\ have "fold_graph f z A (fold f z A)" by (rule fold_graph_fold) - with \x \ A\ have "fold_graph f z (insert x A) (f x (fold f z A))" by (rule fold_graph.insertI) - then show "fold_graph f z (insert x A) (f x (fold f z A))" by simp + from \finite A\ have "fold_graph f z A (fold f z A)" + by (rule fold_graph_fold) + with \x \ A\ have "fold_graph f z (insert x A) (f x (fold f z A))" + by (rule fold_graph.insertI) + then show "fold_graph f z (insert x A) (f x (fold f z A))" + by simp qed declare (in -) empty_fold_graphE [rule del] fold_graph.intros [rule del] \ \No more proofs involve these.\ -lemma fold_fun_left_comm: - "finite A \ f x (fold f z A) = fold f (f x z) A" +lemma fold_fun_left_comm: "finite A \ f x (fold f z A) = fold f (f x z) A" proof (induct rule: finite_induct) - case empty then show ?case by simp + case empty + then show ?case by simp next - case (insert y A) then show ?case + case insert + then show ?case by (simp add: fun_left_comm [of x]) qed -lemma fold_insert2: - "finite A \ x \ A \ fold f z (insert x A) = fold f (f x z) A" +lemma fold_insert2: "finite A \ x \ A \ fold f z (insert x A) = fold f (f x z) A" by (simp add: fold_fun_left_comm) lemma fold_rec: assumes "finite A" and "x \ A" shows "fold f z A = f x (fold f z (A - {x}))" proof - - have A: "A = insert x (A - {x})" using \x \ A\ by blast - then have "fold f z A = fold f z (insert x (A - {x}))" by simp + have A: "A = insert x (A - {x})" + using \x \ A\ by blast + then have "fold f z A = fold f z (insert x (A - {x}))" + by simp also have "\ = f x (fold f z (A - {x}))" by (rule fold_insert) (simp add: \finite A\)+ finally show ?thesis . @@ -782,27 +823,32 @@ assumes "finite A" shows "fold f z (insert x A) = f x (fold f z (A - {x}))" proof - - from \finite A\ have "finite (insert x A)" by auto - moreover have "x \ insert x A" by auto + from \finite A\ have "finite (insert x A)" + by auto + moreover have "x \ insert x A" + by auto ultimately have "fold f z (insert x A) = f x (fold f z (insert x A - {x}))" by (rule fold_rec) - then show ?thesis by simp + then show ?thesis + by simp qed lemma fold_set_union_disj: assumes "finite A" "finite B" "A \ B = {}" shows "Finite_Set.fold f z (A \ B) = Finite_Set.fold f (Finite_Set.fold f z A) B" -using assms(2,1,3) by induction simp_all + using assms(2,1,3) by induct simp_all end -text\Other properties of @{const fold}:\ +text \Other properties of @{const fold}:\ lemma fold_image: assumes "inj_on g A" shows "fold f z (g ` A) = fold (f \ g) z A" proof (cases "finite A") - case False with assms show ?thesis by (auto dest: finite_imageD simp add: fold_def) + case False + with assms show ?thesis + by (auto dest: finite_imageD simp add: fold_def) next case True have "fold_graph f z (g ` A) = fold_graph (f \ g) z A" @@ -810,48 +856,63 @@ fix w show "fold_graph f z (g ` A) w \ fold_graph (f \ g) z A w" (is "?P \ ?Q") proof - assume ?P then show ?Q using assms + assume ?P + then show ?Q + using assms proof (induct "g ` A" w arbitrary: A) - case emptyI then show ?case by (auto intro: fold_graph.emptyI) + case emptyI + then show ?case by (auto intro: fold_graph.emptyI) next case (insertI x A r B) - from \inj_on g B\ \x \ A\ \insert x A = image g B\ obtain x' A' where - "x' \ A'" and [simp]: "B = insert x' A'" "x = g x'" "A = g ` A'" + from \inj_on g B\ \x \ A\ \insert x A = image g B\ obtain x' A' + where "x' \ A'" and [simp]: "B = insert x' A'" "x = g x'" "A = g ` A'" by (rule inj_img_insertE) - from insertI.prems have "fold_graph (f o g) z A' r" + from insertI.prems have "fold_graph (f \ g) z A' r" by (auto intro: insertI.hyps) with \x' \ A'\ have "fold_graph (f \ g) z (insert x' A') ((f \ g) x' r)" by (rule fold_graph.insertI) - then show ?case by simp + then show ?case + by simp qed next - assume ?Q then show ?P using assms + assume ?Q + then show ?P + using assms proof induct - case emptyI thus ?case by (auto intro: fold_graph.emptyI) + case emptyI + then show ?case + by (auto intro: fold_graph.emptyI) next case (insertI x A r) - from \x \ A\ insertI.prems have "g x \ g ` A" by auto - moreover from insertI have "fold_graph f z (g ` A) r" by simp + from \x \ A\ insertI.prems have "g x \ g ` A" + by auto + moreover from insertI have "fold_graph f z (g ` A) r" + by simp ultimately have "fold_graph f z (insert (g x) (g ` A)) (f (g x) r)" by (rule fold_graph.insertI) - then show ?case by simp + then show ?case + by simp qed qed qed - with True assms show ?thesis by (auto simp add: fold_def) + with True assms show ?thesis + by (auto simp add: fold_def) qed lemma fold_cong: assumes "comp_fun_commute f" "comp_fun_commute g" - assumes "finite A" and cong: "\x. x \ A \ f x = g x" + and "finite A" + and cong: "\x. x \ A \ f x = g x" and "s = t" and "A = B" shows "fold f s A = fold g t B" proof - - have "fold f s A = fold g s A" - using \finite A\ cong proof (induct A) - case empty then show ?case by simp + have "fold f s A = fold g s A" + using \finite A\ cong + proof (induct A) + case empty + then show ?case by simp next - case (insert x A) + case insert interpret f: comp_fun_commute f by (fact \comp_fun_commute f\) interpret g: comp_fun_commute g by (fact \comp_fun_commute g\) from insert show ?case by simp @@ -874,16 +935,19 @@ shows "fold f z (insert x A) = f x (fold f z A)" proof cases assume "x \ A" - then obtain B where "A = insert x B" and "x \ B" by (rule set_insert) - then show ?thesis using assms by (simp add: comp_fun_idem fun_left_idem) + then obtain B where "A = insert x B" and "x \ B" + by (rule set_insert) + then show ?thesis + using assms by (simp add: comp_fun_idem fun_left_idem) next - assume "x \ A" then show ?thesis using assms by simp + assume "x \ A" + then show ?thesis + using assms by simp qed declare fold_insert [simp del] fold_insert_idem [simp] -lemma fold_insert_idem2: - "finite A \ fold f z (insert x A) = fold f (f x z) A" +lemma fold_insert_idem2: "finite A \ fold f z (insert x A) = fold f (f x z) A" by (simp add: fold_fun_left_comm) end @@ -891,50 +955,54 @@ subsubsection \Liftings to \comp_fun_commute\ etc.\ -lemma (in comp_fun_commute) comp_comp_fun_commute: - "comp_fun_commute (f \ g)" -proof -qed (simp_all add: comp_fun_commute) +lemma (in comp_fun_commute) comp_comp_fun_commute: "comp_fun_commute (f \ g)" + by standard (simp_all add: comp_fun_commute) -lemma (in comp_fun_idem) comp_comp_fun_idem: - "comp_fun_idem (f \ g)" +lemma (in comp_fun_idem) comp_comp_fun_idem: "comp_fun_idem (f \ g)" by (rule comp_fun_idem.intro, rule comp_comp_fun_commute, unfold_locales) (simp_all add: comp_fun_idem) -lemma (in comp_fun_commute) comp_fun_commute_funpow: - "comp_fun_commute (\x. f x ^^ g x)" +lemma (in comp_fun_commute) comp_fun_commute_funpow: "comp_fun_commute (\x. f x ^^ g x)" proof - fix y x - show "f y ^^ g y \ f x ^^ g x = f x ^^ g x \ f y ^^ g y" + show "f y ^^ g y \ f x ^^ g x = f x ^^ g x \ f y ^^ g y" for x y proof (cases "x = y") - case True then show ?thesis by simp + case True + then show ?thesis by simp next - case False show ?thesis + case False + show ?thesis proof (induct "g x" arbitrary: g) - case 0 then show ?case by simp + case 0 + then show ?case by simp next case (Suc n g) have hyp1: "f y ^^ g y \ f x = f x \ f y ^^ g y" proof (induct "g y" arbitrary: g) - case 0 then show ?case by simp + case 0 + then show ?case by simp next case (Suc n g) define h where "h z = g z - 1" for z - with Suc have "n = h y" by simp + with Suc have "n = h y" + by simp with Suc have hyp: "f y ^^ h y \ f x = f x \ f y ^^ h y" by auto - from Suc h_def have "g y = Suc (h y)" by simp - then show ?case by (simp add: comp_assoc hyp) - (simp add: o_assoc comp_fun_commute) + from Suc h_def have "g y = Suc (h y)" + by simp + then show ?case + by (simp add: comp_assoc hyp) (simp add: o_assoc comp_fun_commute) qed define h where "h z = (if z = x then g x - 1 else g z)" for z - with Suc have "n = h x" by simp + with Suc have "n = h x" + by simp with Suc have "f y ^^ h y \ f x ^^ h x = f x ^^ h x \ f y ^^ h y" by auto - with False h_def have hyp2: "f y ^^ g y \ f x ^^ h x = f x ^^ h x \ f y ^^ g y" by simp - from Suc h_def have "g x = Suc (h x)" by simp - then show ?case by (simp del: funpow.simps add: funpow_Suc_right o_assoc hyp2) - (simp add: comp_assoc hyp1) + with False h_def have hyp2: "f y ^^ g y \ f x ^^ h x = f x ^^ h x \ f y ^^ g y" + by simp + from Suc h_def have "g x = Suc (h x)" + by simp + then show ?case + by (simp del: funpow.simps add: funpow_Suc_right o_assoc hyp2) (simp add: comp_assoc hyp1) qed qed qed @@ -942,51 +1010,45 @@ subsubsection \Expressing set operations via @{const fold}\ -lemma comp_fun_commute_const: - "comp_fun_commute (\_. f)" -proof -qed rule +lemma comp_fun_commute_const: "comp_fun_commute (\_. f)" + by standard rule -lemma comp_fun_idem_insert: - "comp_fun_idem insert" -proof -qed auto +lemma comp_fun_idem_insert: "comp_fun_idem insert" + by standard auto -lemma comp_fun_idem_remove: - "comp_fun_idem Set.remove" -proof -qed auto +lemma comp_fun_idem_remove: "comp_fun_idem Set.remove" + by standard auto -lemma (in semilattice_inf) comp_fun_idem_inf: - "comp_fun_idem inf" -proof -qed (auto simp add: inf_left_commute) +lemma (in semilattice_inf) comp_fun_idem_inf: "comp_fun_idem inf" + by standard (auto simp add: inf_left_commute) -lemma (in semilattice_sup) comp_fun_idem_sup: - "comp_fun_idem sup" -proof -qed (auto simp add: sup_left_commute) +lemma (in semilattice_sup) comp_fun_idem_sup: "comp_fun_idem sup" + by standard (auto simp add: sup_left_commute) lemma union_fold_insert: assumes "finite A" shows "A \ B = fold insert B A" proof - - interpret comp_fun_idem insert by (fact comp_fun_idem_insert) - from \finite A\ show ?thesis by (induct A arbitrary: B) simp_all + interpret comp_fun_idem insert + by (fact comp_fun_idem_insert) + from \finite A\ show ?thesis + by (induct A arbitrary: B) simp_all qed lemma minus_fold_remove: assumes "finite A" shows "B - A = fold Set.remove B A" proof - - interpret comp_fun_idem Set.remove by (fact comp_fun_idem_remove) - from \finite A\ have "fold Set.remove B A = B - A" by (induct A arbitrary: B) auto + interpret comp_fun_idem Set.remove + by (fact comp_fun_idem_remove) + from \finite A\ have "fold Set.remove B A = B - A" + by (induct A arbitrary: B) auto then show ?thesis .. qed lemma comp_fun_commute_filter_fold: "comp_fun_commute (\x A'. if P x then Set.insert x A' else A')" -proof - +proof - interpret comp_fun_idem Set.insert by (fact comp_fun_idem_insert) show ?thesis by standard (auto simp: fun_eq_iff) qed @@ -994,77 +1056,79 @@ lemma Set_filter_fold: assumes "finite A" shows "Set.filter P A = fold (\x A'. if P x then Set.insert x A' else A') {} A" -using assms -by (induct A) - (auto simp add: Set.filter_def comp_fun_commute.fold_insert[OF comp_fun_commute_filter_fold]) + using assms + by induct + (auto simp add: Set.filter_def comp_fun_commute.fold_insert[OF comp_fun_commute_filter_fold]) -lemma inter_Set_filter: +lemma inter_Set_filter: assumes "finite B" shows "A \ B = Set.filter (\x. x \ A) B" -using assms -by (induct B) (auto simp: Set.filter_def) + using assms + by induct (auto simp: Set.filter_def) lemma image_fold_insert: assumes "finite A" shows "image f A = fold (\k A. Set.insert (f k) A) {} A" -using assms proof - - interpret comp_fun_commute "\k A. Set.insert (f k) A" by standard auto - show ?thesis using assms by (induct A) auto + interpret comp_fun_commute "\k A. Set.insert (f k) A" + by standard auto + show ?thesis + using assms by (induct A) auto qed lemma Ball_fold: assumes "finite A" shows "Ball A P = fold (\k s. s \ P k) True A" -using assms proof - - interpret comp_fun_commute "\k s. s \ P k" by standard auto - show ?thesis using assms by (induct A) auto + interpret comp_fun_commute "\k s. s \ P k" + by standard auto + show ?thesis + using assms by (induct A) auto qed lemma Bex_fold: assumes "finite A" shows "Bex A P = fold (\k s. s \ P k) False A" -using assms proof - - interpret comp_fun_commute "\k s. s \ P k" by standard auto - show ?thesis using assms by (induct A) auto + interpret comp_fun_commute "\k s. s \ P k" + by standard auto + show ?thesis + using assms by (induct A) auto qed -lemma comp_fun_commute_Pow_fold: - "comp_fun_commute (\x A. A \ Set.insert x ` A)" +lemma comp_fun_commute_Pow_fold: "comp_fun_commute (\x A. A \ Set.insert x ` A)" by (clarsimp simp: fun_eq_iff comp_fun_commute_def) blast lemma Pow_fold: assumes "finite A" shows "Pow A = fold (\x A. A \ Set.insert x ` A) {{}} A" -using assms proof - - interpret comp_fun_commute "\x A. A \ Set.insert x ` A" by (rule comp_fun_commute_Pow_fold) - show ?thesis using assms by (induct A) (auto simp: Pow_insert) + interpret comp_fun_commute "\x A. A \ Set.insert x ` A" + by (rule comp_fun_commute_Pow_fold) + show ?thesis + using assms by (induct A) (auto simp: Pow_insert) qed lemma fold_union_pair: assumes "finite B" shows "(\y\B. {(x, y)}) \ A = fold (\y. Set.insert (x, y)) A B" proof - - interpret comp_fun_commute "\y. Set.insert (x, y)" by standard auto - show ?thesis using assms by (induct B arbitrary: A) simp_all + interpret comp_fun_commute "\y. Set.insert (x, y)" + by standard auto + show ?thesis + using assms by (induct arbitrary: A) simp_all qed -lemma comp_fun_commute_product_fold: - assumes "finite B" - shows "comp_fun_commute (\x z. fold (\y. Set.insert (x, y)) z B)" - by standard (auto simp: fold_union_pair[symmetric] assms) +lemma comp_fun_commute_product_fold: + "finite B \ comp_fun_commute (\x z. fold (\y. Set.insert (x, y)) z B)" + by standard (auto simp: fold_union_pair [symmetric]) lemma product_fold: - assumes "finite A" - assumes "finite B" + assumes "finite A" "finite B" shows "A \ B = fold (\x z. fold (\y. Set.insert (x, y)) z B) {} A" -using assms unfolding Sigma_def -by (induct A) - (simp_all add: comp_fun_commute.fold_insert[OF comp_fun_commute_product_fold] fold_union_pair) - + using assms unfolding Sigma_def + by (induct A) + (simp_all add: comp_fun_commute.fold_insert[OF comp_fun_commute_product_fold] fold_union_pair) context complete_lattice begin @@ -1073,61 +1137,55 @@ assumes "finite A" shows "inf (Inf A) B = fold inf B A" proof - - interpret comp_fun_idem inf by (fact comp_fun_idem_inf) - from \finite A\ fold_fun_left_comm show ?thesis by (induct A arbitrary: B) - (simp_all add: inf_commute fun_eq_iff) + interpret comp_fun_idem inf + by (fact comp_fun_idem_inf) + from \finite A\ fold_fun_left_comm show ?thesis + by (induct A arbitrary: B) (simp_all add: inf_commute fun_eq_iff) qed lemma sup_Sup_fold_sup: assumes "finite A" shows "sup (Sup A) B = fold sup B A" proof - - interpret comp_fun_idem sup by (fact comp_fun_idem_sup) - from \finite A\ fold_fun_left_comm show ?thesis by (induct A arbitrary: B) - (simp_all add: sup_commute fun_eq_iff) + interpret comp_fun_idem sup + by (fact comp_fun_idem_sup) + from \finite A\ fold_fun_left_comm show ?thesis + by (induct A arbitrary: B) (simp_all add: sup_commute fun_eq_iff) qed -lemma Inf_fold_inf: - assumes "finite A" - shows "Inf A = fold inf top A" - using assms inf_Inf_fold_inf [of A top] by (simp add: inf_absorb2) +lemma Inf_fold_inf: "finite A \ Inf A = fold inf top A" + using inf_Inf_fold_inf [of A top] by (simp add: inf_absorb2) -lemma Sup_fold_sup: - assumes "finite A" - shows "Sup A = fold sup bot A" - using assms sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2) +lemma Sup_fold_sup: "finite A \ Sup A = fold sup bot A" + using sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2) lemma inf_INF_fold_inf: assumes "finite A" - shows "inf B (INFIMUM A f) = fold (inf \ f) B A" (is "?inf = ?fold") -proof (rule sym) + shows "inf B (INFIMUM A f) = fold (inf \ f) B A" (is "?inf = ?fold") +proof - interpret comp_fun_idem inf by (fact comp_fun_idem_inf) interpret comp_fun_idem "inf \ f" by (fact comp_comp_fun_idem) - from \finite A\ show "?fold = ?inf" - by (induct A arbitrary: B) - (simp_all add: inf_left_commute) + from \finite A\ have "?fold = ?inf" + by (induct A arbitrary: B) (simp_all add: inf_left_commute) + then show ?thesis .. qed lemma sup_SUP_fold_sup: assumes "finite A" - shows "sup B (SUPREMUM A f) = fold (sup \ f) B A" (is "?sup = ?fold") -proof (rule sym) + shows "sup B (SUPREMUM A f) = fold (sup \ f) B A" (is "?sup = ?fold") +proof - interpret comp_fun_idem sup by (fact comp_fun_idem_sup) interpret comp_fun_idem "sup \ f" by (fact comp_comp_fun_idem) - from \finite A\ show "?fold = ?sup" - by (induct A arbitrary: B) - (simp_all add: sup_left_commute) + from \finite A\ have "?fold = ?sup" + by (induct A arbitrary: B) (simp_all add: sup_left_commute) + then show ?thesis .. qed -lemma INF_fold_inf: - assumes "finite A" - shows "INFIMUM A f = fold (inf \ f) top A" - using assms inf_INF_fold_inf [of A top] by simp +lemma INF_fold_inf: "finite A \ INFIMUM A f = fold (inf \ f) top A" + using inf_INF_fold_inf [of A top] by simp -lemma SUP_fold_sup: - assumes "finite A" - shows "SUPREMUM A f = fold (sup \ f) bot A" - using assms sup_SUP_fold_sup [of A bot] by simp +lemma SUP_fold_sup: "finite A \ SUPREMUM A f = fold (sup \ f) bot A" + using sup_SUP_fold_sup [of A bot] by simp end @@ -1146,15 +1204,14 @@ by standard (insert comp_fun_commute, simp add: fun_eq_iff) definition F :: "'a set \ 'b" -where - eq_fold: "F A = fold f z A" + where eq_fold: "F A = fold f z A" lemma empty [simp]:"F {} = z" by (simp add: eq_fold) lemma infinite [simp]: "\ finite A \ F A = z" by (simp add: eq_fold) - + lemma insert [simp]: assumes "finite A" and "x \ A" shows "F (insert x A) = f x (F A)" @@ -1163,7 +1220,7 @@ have "fold f z (insert x A) = f x (fold f z A)" by simp with \finite A\ show ?thesis by (simp add: eq_fold fun_eq_iff) qed - + lemma remove: assumes "finite A" and "x \ A" shows "F A = f x (F (A - {x}))" @@ -1174,10 +1231,8 @@ ultimately show ?thesis by simp qed -lemma insert_remove: - assumes "finite A" - shows "F (insert x A) = f x (F (A - {x}))" - using assms by (cases "x \ A") (simp_all add: remove insert_absorb) +lemma insert_remove: "finite A \ F (insert x A) = f x (F (A - {x}))" + by (cases "x \ A") (simp_all add: remove insert_absorb) end @@ -1209,7 +1264,7 @@ text \ The traditional definition - @{prop "card A \ LEAST n. EX f. A = {f i | i. i < n}"} + @{prop "card A \ LEAST n. \f. A = {f i |i. i < n}"} is ugly to work with. But now that we have @{const fold} things are easy: \ @@ -1218,60 +1273,49 @@ defines card = "folding.F (\_. Suc) 0" by standard rule -lemma card_infinite: - "\ finite A \ card A = 0" +lemma card_infinite: "\ finite A \ card A = 0" by (fact card.infinite) -lemma card_empty: - "card {} = 0" +lemma card_empty: "card {} = 0" by (fact card.empty) -lemma card_insert_disjoint: - "finite A \ x \ A \ card (insert x A) = Suc (card A)" +lemma card_insert_disjoint: "finite A \ x \ A \ card (insert x A) = Suc (card A)" by (fact card.insert) -lemma card_insert_if: - "finite A \ card (insert x A) = (if x \ A then card A else Suc (card A))" +lemma card_insert_if: "finite A \ card (insert x A) = (if x \ A then card A else Suc (card A))" by auto (simp add: card.insert_remove card.remove) -lemma card_ge_0_finite: - "card A > 0 \ finite A" +lemma card_ge_0_finite: "card A > 0 \ finite A" by (rule ccontr) simp -lemma card_0_eq [simp]: - "finite A \ card A = 0 \ A = {}" +lemma card_0_eq [simp]: "finite A \ card A = 0 \ A = {}" by (auto dest: mk_disjoint_insert) -lemma finite_UNIV_card_ge_0: - "finite (UNIV :: 'a set) \ card (UNIV :: 'a set) > 0" +lemma finite_UNIV_card_ge_0: "finite (UNIV :: 'a set) \ card (UNIV :: 'a set) > 0" by (rule ccontr) simp -lemma card_eq_0_iff: - "card A = 0 \ A = {} \ \ finite A" +lemma card_eq_0_iff: "card A = 0 \ A = {} \ \ finite A" by auto -lemma card_range_greater_zero: - "finite (range f) \ card (range f) > 0" +lemma card_range_greater_zero: "finite (range f) \ card (range f) > 0" by (rule ccontr) (simp add: card_eq_0_iff) -lemma card_gt_0_iff: - "0 < card A \ A \ {} \ finite A" - by (simp add: neq0_conv [symmetric] card_eq_0_iff) +lemma card_gt_0_iff: "0 < card A \ A \ {} \ finite A" + by (simp add: neq0_conv [symmetric] card_eq_0_iff) -lemma card_Suc_Diff1: - "finite A \ x \ A \ Suc (card (A - {x})) = card A" -apply(rule_tac t = A in insert_Diff [THEN subst], assumption) -apply(simp del:insert_Diff_single) -done +lemma card_Suc_Diff1: "finite A \ x \ A \ Suc (card (A - {x})) = card A" + apply (rule insert_Diff [THEN subst, where t = A]) + apply assumption + apply (simp del: insert_Diff_single) + done -lemma card_insert_le_m1: "n>0 \ card y \ n-1 \ card (insert x y) \ n" +lemma card_insert_le_m1: "n > 0 \ card y \ n - 1 \ card (insert x y) \ n" apply (cases "finite y") apply (cases "x \ y") apply (auto simp: insert_absorb) done -lemma card_Diff_singleton: - "finite A \ x \ A \ card (A - {x}) = card A - 1" +lemma card_Diff_singleton: "finite A \ x \ A \ card (A - {x}) = card A - 1" by (simp add: card_Suc_Diff1 [symmetric]) lemma card_Diff_singleton_if: @@ -1282,124 +1326,137 @@ assumes "finite A" and "a \ A" and "a \ B" shows "card (A - insert a B) = card (A - B) - 1" proof - - have "A - insert a B = (A - B) - {a}" using assms by blast - then show ?thesis using assms by(simp add: card_Diff_singleton) + have "A - insert a B = (A - B) - {a}" + using assms by blast + then show ?thesis + using assms by (simp add: card_Diff_singleton) qed -lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))" +lemma card_insert: "finite A \ card (insert x A) = Suc (card (A - {x}))" by (fact card.insert_remove) -lemma card_insert_le: "finite A ==> card A <= card (insert x A)" -by (simp add: card_insert_if) +lemma card_insert_le: "finite A \ card A \ card (insert x A)" + by (simp add: card_insert_if) -lemma card_Collect_less_nat[simp]: "card{i::nat. i < n} = n" -by (induct n) (simp_all add:less_Suc_eq Collect_disj_eq) +lemma card_Collect_less_nat[simp]: "card {i::nat. i < n} = n" + by (induct n) (simp_all add:less_Suc_eq Collect_disj_eq) -lemma card_Collect_le_nat[simp]: "card{i::nat. i <= n} = Suc n" -using card_Collect_less_nat[of "Suc n"] by(simp add: less_Suc_eq_le) +lemma card_Collect_le_nat[simp]: "card {i::nat. i \ n} = Suc n" + using card_Collect_less_nat[of "Suc n"] by (simp add: less_Suc_eq_le) lemma card_mono: assumes "finite B" and "A \ B" shows "card A \ card B" proof - - from assms have "finite A" by (auto intro: finite_subset) - then show ?thesis using assms proof (induct A arbitrary: B) - case empty then show ?case by simp + from assms have "finite A" + by (auto intro: finite_subset) + then show ?thesis + using assms + proof (induct A arbitrary: B) + case empty + then show ?case by simp next case (insert x A) - then have "x \ B" by simp - from insert have "A \ B - {x}" and "finite (B - {x})" by auto - with insert.hyps have "card A \ card (B - {x})" by auto - with \finite A\ \x \ A\ \finite B\ \x \ B\ show ?case by simp (simp only: card.remove) + then have "x \ B" + by simp + from insert have "A \ B - {x}" and "finite (B - {x})" + by auto + with insert.hyps have "card A \ card (B - {x})" + by auto + with \finite A\ \x \ A\ \finite B\ \x \ B\ show ?case + by simp (simp only: card.remove) qed qed -lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" -apply (induct rule: finite_induct) -apply simp -apply clarify -apply (subgoal_tac "finite A & A - {x} <= F") - prefer 2 apply (blast intro: finite_subset, atomize) -apply (drule_tac x = "A - {x}" in spec) -apply (simp add: card_Diff_singleton_if split add: if_split_asm) -apply (case_tac "card A", auto) -done +lemma card_seteq: "finite B \ (\A. A \ B \ card B \ card A \ A = B)" + apply (induct rule: finite_induct) + apply simp + apply clarify + apply (subgoal_tac "finite A \ A - {x} \ F") + prefer 2 apply (blast intro: finite_subset, atomize) + apply (drule_tac x = "A - {x}" in spec) + apply (simp add: card_Diff_singleton_if split add: if_split_asm) + apply (case_tac "card A", auto) + done -lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" -apply (simp add: psubset_eq linorder_not_le [symmetric]) -apply (blast dest: card_seteq) -done +lemma psubset_card_mono: "finite B \ A < B \ card A < card B" + apply (simp add: psubset_eq linorder_not_le [symmetric]) + apply (blast dest: card_seteq) + done lemma card_Un_Int: - assumes "finite A" and "finite B" + assumes "finite A" "finite B" shows "card A + card B = card (A \ B) + card (A \ B)" -using assms proof (induct A) - case empty then show ?case by simp + using assms +proof (induct A) + case empty + then show ?case by simp next - case (insert x A) then show ?case + case insert + then show ?case by (auto simp add: insert_absorb Int_insert_left) qed -lemma card_Un_disjoint: - assumes "finite A" and "finite B" - assumes "A \ B = {}" - shows "card (A \ B) = card A + card B" -using assms card_Un_Int [of A B] by simp +lemma card_Un_disjoint: "finite A \ finite B \ A \ B = {} \ card (A \ B) = card A + card B" + using card_Un_Int [of A B] by simp lemma card_Un_le: "card (A \ B) \ card A + card B" -apply(cases "finite A") - apply(cases "finite B") - using le_iff_add card_Un_Int apply blast - apply simp -apply simp -done + apply (cases "finite A") + apply (cases "finite B") + using le_iff_add card_Un_Int apply blast + apply simp + apply simp + done lemma card_Diff_subset: - assumes "finite B" and "B \ A" + assumes "finite B" + and "B \ A" shows "card (A - B) = card A - card B" proof (cases "finite A") - case False with assms show ?thesis by simp + case False + with assms show ?thesis + by simp next - case True with assms show ?thesis by (induct B arbitrary: A) simp_all + case True + with assms show ?thesis + by (induct B arbitrary: A) simp_all qed lemma card_Diff_subset_Int: - assumes AB: "finite (A \ B)" shows "card (A - B) = card A - card (A \ B)" + assumes "finite (A \ B)" + shows "card (A - B) = card A - card (A \ B)" proof - have "A - B = A - A \ B" by auto - thus ?thesis - by (simp add: card_Diff_subset AB) + with assms show ?thesis + by (simp add: card_Diff_subset) qed lemma diff_card_le_card_Diff: -assumes "finite B" shows "card A - card B \ card(A - B)" -proof- + assumes "finite B" + shows "card A - card B \ card (A - B)" +proof - have "card A - card B \ card A - card (A \ B)" using card_mono[OF assms Int_lower2, of A] by arith - also have "\ = card(A-B)" using assms by(simp add: card_Diff_subset_Int) + also have "\ = card (A - B)" + using assms by (simp add: card_Diff_subset_Int) finally show ?thesis . qed -lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A" -apply (rule Suc_less_SucD) -apply (simp add: card_Suc_Diff1 del:card_Diff_insert) -done +lemma card_Diff1_less: "finite A \ x \ A \ card (A - {x}) < card A" + by (rule Suc_less_SucD) (simp add: card_Suc_Diff1 del: card_Diff_insert) -lemma card_Diff2_less: - "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A" -apply (case_tac "x = y") - apply (simp add: card_Diff1_less del:card_Diff_insert) -apply (rule less_trans) - prefer 2 apply (auto intro!: card_Diff1_less simp del:card_Diff_insert) -done +lemma card_Diff2_less: "finite A \ x \ A \ y \ A \ card (A - {x} - {y}) < card A" + apply (cases "x = y") + apply (simp add: card_Diff1_less del:card_Diff_insert) + apply (rule less_trans) + prefer 2 apply (auto intro!: card_Diff1_less simp del: card_Diff_insert) + done -lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A" -apply (case_tac "x : A") - apply (simp_all add: card_Diff1_less less_imp_le) -done +lemma card_Diff1_le: "finite A \ card (A - {x}) \ card A" + by (cases "x \ A") (simp_all add: card_Diff1_less less_imp_le) -lemma card_psubset: "finite B ==> A \ B ==> card A < card B ==> A < B" -by (erule psubsetI, blast) +lemma card_psubset: "finite B \ A \ B \ card A < card B \ A < B" + by (erule psubsetI) blast lemma card_le_inj: assumes fA: "finite A" @@ -1413,7 +1470,7 @@ next case (insert x s t) then show ?case - proof (induct rule: finite_induct[OF "insert.prems"(1)]) + proof (induct rule: finite_induct [OF insert.prems(1)]) case 1 then show ?case by simp next @@ -1454,41 +1511,43 @@ qed lemma insert_partition: - "\ x \ F; \c1 \ insert x F. \c2 \ insert x F. c1 \ c2 \ c1 \ c2 = {} \ - \ x \ \F = {}" -by auto + "x \ F \ \c1 \ insert x F. \c2 \ insert x F. c1 \ c2 \ c1 \ c2 = {} \ x \ \F = {}" + by auto -lemma finite_psubset_induct[consumes 1, case_names psubset]: - assumes fin: "finite A" - and major: "\A. finite A \ (\B. B \ A \ P B) \ P A" +lemma finite_psubset_induct [consumes 1, case_names psubset]: + assumes finite: "finite A" + and major: "\A. finite A \ (\B. B \ A \ P B) \ P A" shows "P A" -using fin + using finite proof (induct A taking: card rule: measure_induct_rule) case (less A) have fin: "finite A" by fact - have ih: "\B. \card B < card A; finite B\ \ P B" by fact - { fix B - assume asm: "B \ A" - from asm have "card B < card A" using psubset_card_mono fin by blast + have ih: "card B < card A \ finite B \ P B" for B by fact + have "P B" if "B \ A" for B + proof - + from that have "card B < card A" + using psubset_card_mono fin by blast moreover - from asm have "B \ A" by auto - then have "finite B" using fin finite_subset by blast - ultimately - have "P B" using ih by simp - } + from that have "B \ A" + by auto + then have "finite B" + using fin finite_subset by blast + ultimately show ?thesis using ih by simp + qed with fin show "P A" using major by blast qed -lemma finite_induct_select[consumes 1, case_names empty select]: +lemma finite_induct_select [consumes 1, case_names empty select]: assumes "finite S" - assumes "P {}" - assumes select: "\T. T \ S \ P T \ \s\S - T. P (insert s T)" + and "P {}" + and select: "\T. T \ S \ P T \ \s\S - T. P (insert s T)" shows "P S" proof - have "0 \ card S" by simp then have "\T \ S. card T = card S \ P T" proof (induct rule: dec_induct) - case base with \P {}\ show ?case + case base with \P {}\ + show ?case by (intro exI[of _ "{}"]) auto next case (step n) @@ -1506,24 +1565,27 @@ qed lemma remove_induct [case_names empty infinite remove]: - assumes empty: "P ({} :: 'a set)" and infinite: "\finite B \ P B" - and remove: "\A. finite A \ A \ {} \ A \ B \ (\x. x \ A \ P (A - {x})) \ P A" + assumes empty: "P ({} :: 'a set)" + and infinite: "\ finite B \ P B" + and remove: "\A. finite A \ A \ {} \ A \ B \ (\x. x \ A \ P (A - {x})) \ P A" shows "P B" proof (cases "finite B") assume "\finite B" - thus ?thesis by (rule infinite) + then show ?thesis by (rule infinite) next define A where "A = B" assume "finite B" - hence "finite A" "A \ B" by (simp_all add: A_def) - thus "P A" - proof (induction "card A" arbitrary: A) + then have "finite A" "A \ B" + by (simp_all add: A_def) + then show "P A" + proof (induct "card A" arbitrary: A) case 0 - hence "A = {}" by auto + then have "A = {}" by auto with empty show ?case by simp next case (Suc n A) - from \A \ B\ and \finite B\ have "finite A" by (rule finite_subset) + from \A \ B\ and \finite B\ have "finite A" + by (rule finite_subset) moreover from Suc.hyps have "A \ {}" by auto moreover note \A \ B\ moreover have "P (A - {x})" if x: "x \ A" for x @@ -1533,92 +1595,99 @@ qed lemma finite_remove_induct [consumes 1, case_names empty remove]: - assumes finite: "finite B" and empty: "P ({} :: 'a set)" - and rm: "\A. finite A \ A \ {} \ A \ B \ (\x. x \ A \ P (A - {x})) \ P A" + fixes P :: "'a set \ bool" + assumes finite: "finite B" + and empty: "P {}" + and rm: "\A. finite A \ A \ {} \ A \ B \ (\x. x \ A \ P (A - {x})) \ P A" defines "B' \ B" - shows "P B'" - by (induction B' rule: remove_induct) (simp_all add: assms) + shows "P B'" + by (induct B' rule: remove_induct) (simp_all add: assms) -text\main cardinality theorem\ +text \Main cardinality theorem.\ lemma card_partition [rule_format]: - "finite C ==> - finite (\C) --> - (\c\C. card c = k) --> - (\c1 \ C. \c2 \ C. c1 \ c2 --> c1 \ c2 = {}) --> - k * card(C) = card (\C)" -apply (erule finite_induct, simp) -apply (simp add: card_Un_disjoint insert_partition - finite_subset [of _ "\(insert x F)"]) -done + "finite C \ finite (\C) \ (\c\C. card c = k) \ + (\c1 \ C. \c2 \ C. c1 \ c2 \ c1 \ c2 = {}) \ + k * card C = card (\C)" + apply (induct rule: finite_induct) + apply simp + apply (simp add: card_Un_disjoint insert_partition finite_subset [of _ "\(insert x F)"]) + done lemma card_eq_UNIV_imp_eq_UNIV: assumes fin: "finite (UNIV :: 'a set)" - and card: "card A = card (UNIV :: 'a set)" + and card: "card A = card (UNIV :: 'a set)" shows "A = (UNIV :: 'a set)" proof show "A \ UNIV" by simp show "UNIV \ A" proof - fix x - show "x \ A" + show "x \ A" for x proof (rule ccontr) assume "x \ A" then have "A \ UNIV" by auto - with fin have "card A < card (UNIV :: 'a set)" by (fact psubset_card_mono) + with fin have "card A < card (UNIV :: 'a set)" + by (fact psubset_card_mono) with card show False by simp qed qed qed -text\The form of a finite set of given cardinality\ +text \The form of a finite set of given cardinality\ lemma card_eq_SucD: -assumes "card A = Suc k" -shows "\b B. A = insert b B & b \ B & card B = k & (k=0 \ B={})" + assumes "card A = Suc k" + shows "\b B. A = insert b B \ b \ B \ card B = k \ (k = 0 \ B = {})" proof - - have fin: "finite A" using assms by (auto intro: ccontr) - moreover have "card A \ 0" using assms by auto - ultimately obtain b where b: "b \ A" by auto + have fin: "finite A" + using assms by (auto intro: ccontr) + moreover have "card A \ 0" + using assms by auto + ultimately obtain b where b: "b \ A" + by auto show ?thesis proof (intro exI conjI) - show "A = insert b (A-{b})" using b by blast - show "b \ A - {b}" by blast + show "A = insert b (A - {b})" + using b by blast + show "b \ A - {b}" + by blast show "card (A - {b}) = k" and "k = 0 \ A - {b} = {}" using assms b fin by(fastforce dest:mk_disjoint_insert)+ qed qed lemma card_Suc_eq: - "(card A = Suc k) = - (\b B. A = insert b B & b \ B & card B = k & (k=0 \ B={}))" - apply(auto elim!: card_eq_SucD) - apply(subst card.insert) - apply(auto simp add: intro:ccontr) - done + "card A = Suc k \ + (\b B. A = insert b B \ b \ B \ card B = k \ (k = 0 \ B = {}))" + apply (auto elim!: card_eq_SucD) + apply (subst card.insert) + apply (auto simp add: intro:ccontr) + done lemma card_1_singletonE: - assumes "card A = 1" obtains x where "A = {x}" + assumes "card A = 1" + obtains x where "A = {x}" using assms by (auto simp: card_Suc_eq) lemma is_singleton_altdef: "is_singleton A \ card A = 1" unfolding is_singleton_def by (auto elim!: card_1_singletonE is_singletonE simp del: One_nat_def) -lemma card_le_Suc_iff: "finite A \ - Suc n \ card A = (\a B. A = insert a B \ a \ B \ n \ card B \ finite B)" -by (fastforce simp: card_Suc_eq less_eq_nat.simps(2) insert_eq_iff - dest: subset_singletonD split: nat.splits if_splits) +lemma card_le_Suc_iff: + "finite A \ Suc n \ card A = (\a B. A = insert a B \ a \ B \ n \ card B \ finite B)" + by (fastforce simp: card_Suc_eq less_eq_nat.simps(2) insert_eq_iff + dest: subset_singletonD split: nat.splits if_splits) lemma finite_fun_UNIVD2: assumes fin: "finite (UNIV :: ('a \ 'b) set)" shows "finite (UNIV :: 'b set)" proof - - from fin have "\arbitrary. finite (range (\f :: 'a \ 'b. f arbitrary))" + from fin have "finite (range (\f :: 'a \ 'b. f arbitrary))" for arbitrary by (rule finite_imageI) - moreover have "\arbitrary. UNIV = range (\f :: 'a \ 'b. f arbitrary)" + moreover have "UNIV = range (\f :: 'a \ 'b. f arbitrary)" for arbitrary by (rule UNIV_eq_I) auto - ultimately show "finite (UNIV :: 'b set)" by simp + ultimately show "finite (UNIV :: 'b set)" + by simp qed lemma card_UNIV_unit [simp]: "card (UNIV :: unit set) = 1" @@ -1628,164 +1697,176 @@ assumes "\ finite A" shows "\B. finite B \ card B = n \ B \ A" proof (induction n) - case 0 show ?case by (intro exI[of _ "{}"]) auto -next + case 0 + show ?case by (intro exI[of _ "{}"]) auto +next case (Suc n) - then guess B .. note B = this + then obtain B where B: "finite B \ card B = n \ B \ A" .. with \\ finite A\ have "A \ B" by auto with B have "B \ A" by auto - hence "\x. x \ A - B" by (elim psubset_imp_ex_mem) - then guess x .. note x = this + then have "\x. x \ A - B" + by (elim psubset_imp_ex_mem) + then obtain x where x: "x \ A - B" .. with B have "finite (insert x B) \ card (insert x B) = Suc n \ insert x B \ A" by auto - thus "\B. finite B \ card B = Suc n \ B \ A" .. + then show "\B. finite B \ card B = Suc n \ B \ A" .. qed + subsubsection \Cardinality of image\ -lemma card_image_le: "finite A ==> card (f ` A) \ card A" +lemma card_image_le: "finite A \ card (f ` A) \ card A" by (induct rule: finite_induct) (simp_all add: le_SucI card_insert_if) lemma card_image: assumes "inj_on f A" shows "card (f ` A) = card A" proof (cases "finite A") - case True then show ?thesis using assms by (induct A) simp_all + case True + then show ?thesis + using assms by (induct A) simp_all next - case False then have "\ finite (f ` A)" using assms by (auto dest: finite_imageD) - with False show ?thesis by simp + case False + then have "\ finite (f ` A)" + using assms by (auto dest: finite_imageD) + with False show ?thesis + by simp qed lemma bij_betw_same_card: "bij_betw f A B \ card A = card B" -by(auto simp: card_image bij_betw_def) + by(auto simp: card_image bij_betw_def) -lemma endo_inj_surj: "finite A ==> f ` A \ A ==> inj_on f A ==> f ` A = A" -by (simp add: card_seteq card_image) +lemma endo_inj_surj: "finite A \ f ` A \ A \ inj_on f A \ f ` A = A" + by (simp add: card_seteq card_image) lemma eq_card_imp_inj_on: - assumes "finite A" "card(f ` A) = card A" shows "inj_on f A" -using assms + assumes "finite A" "card(f ` A) = card A" + shows "inj_on f A" + using assms proof (induct rule:finite_induct) - case empty show ?case by simp + case empty + show ?case by simp next case (insert x A) - then show ?case using card_image_le [of A f] - by (simp add: card_insert_if split: if_splits) + then show ?case + using card_image_le [of A f] by (simp add: card_insert_if split: if_splits) qed -lemma inj_on_iff_eq_card: "finite A \ inj_on f A \ card(f ` A) = card A" +lemma inj_on_iff_eq_card: "finite A \ inj_on f A \ card (f ` A) = card A" by (blast intro: card_image eq_card_imp_inj_on) lemma card_inj_on_le: - assumes "inj_on f A" "f ` A \ B" "finite B" shows "card A \ card B" + assumes "inj_on f A" "f ` A \ B" "finite B" + shows "card A \ card B" proof - - have "finite A" using assms - by (blast intro: finite_imageD dest: finite_subset) - then show ?thesis using assms - by (force intro: card_mono simp: card_image [symmetric]) + have "finite A" + using assms by (blast intro: finite_imageD dest: finite_subset) + then show ?thesis + using assms by (force intro: card_mono simp: card_image [symmetric]) qed lemma surj_card_le: "finite A \ B \ f ` A \ card B \ card A" by (blast intro: card_image_le card_mono le_trans) lemma card_bij_eq: - "[|inj_on f A; f ` A \ B; inj_on g B; g ` B \ A; - finite A; finite B |] ==> card A = card B" -by (auto intro: le_antisym card_inj_on_le) + "inj_on f A \ f ` A \ B \ inj_on g B \ g ` B \ A \ finite A \ finite B + \ card A = card B" + by (auto intro: le_antisym card_inj_on_le) + +lemma bij_betw_finite: "bij_betw f A B \ finite A \ finite B" + unfolding bij_betw_def using finite_imageD [of f A] by auto -lemma bij_betw_finite: - assumes "bij_betw f A B" - shows "finite A \ finite B" -using assms unfolding bij_betw_def -using finite_imageD[of f A] by auto +lemma inj_on_finite: "inj_on f A \ f ` A \ B \ finite B \ finite A" + using finite_imageD finite_subset by blast -lemma inj_on_finite: -assumes "inj_on f A" "f ` A \ B" "finite B" -shows "finite A" -using assms finite_imageD finite_subset by blast +lemma card_vimage_inj: "inj f \ A \ range f \ card (f -` A) = card A" + by (auto 4 3 simp: subset_image_iff inj_vimage_image_eq + intro: card_image[symmetric, OF subset_inj_on]) -lemma card_vimage_inj: "\ inj f; A \ range f \ \ card (f -` A) = card A" -by(auto 4 3 simp add: subset_image_iff inj_vimage_image_eq intro: card_image[symmetric, OF subset_inj_on]) subsubsection \Pigeonhole Principles\ -lemma pigeonhole: "card A > card(f ` A) \ ~ inj_on f A " -by (auto dest: card_image less_irrefl_nat) +lemma pigeonhole: "card A > card (f ` A) \ \ inj_on f A " + by (auto dest: card_image less_irrefl_nat) lemma pigeonhole_infinite: -assumes "~ finite A" and "finite(f`A)" -shows "EX a0:A. ~finite{a:A. f a = f a0}" -proof - - have "finite(f`A) \ ~ finite A \ EX a0:A. ~finite{a:A. f a = f a0}" - proof(induct "f`A" arbitrary: A rule: finite_induct) - case empty thus ?case by simp + assumes "\ finite A" and "finite (f`A)" + shows "\a0\A. \ finite {a\A. f a = f a0}" + using assms(2,1) +proof (induct "f`A" arbitrary: A rule: finite_induct) + case empty + then show ?case by simp +next + case (insert b F) + show ?case + proof (cases "finite {a\A. f a = b}") + case True + with \\ finite A\ have "\ finite (A - {a\A. f a = b})" + by simp + also have "A - {a\A. f a = b} = {a\A. f a \ b}" + by blast + finally have "\ finite {a\A. f a \ b}" . + from insert(3)[OF _ this] insert(2,4) show ?thesis + by simp (blast intro: rev_finite_subset) next - case (insert b F) - show ?case - proof cases - assume "finite{a:A. f a = b}" - hence "~ finite(A - {a:A. f a = b})" using \\ finite A\ by simp - also have "A - {a:A. f a = b} = {a:A. f a \ b}" by blast - finally have "~ finite({a:A. f a \ b})" . - from insert(3)[OF _ this] - show ?thesis using insert(2,4) by simp (blast intro: rev_finite_subset) - next - assume 1: "~finite{a:A. f a = b}" - hence "{a \ A. f a = b} \ {}" by force - thus ?thesis using 1 by blast - qed + case False + then have "{a \ A. f a = b} \ {}" by force + with False show ?thesis by blast qed - from this[OF assms(2,1)] show ?thesis . qed lemma pigeonhole_infinite_rel: -assumes "~finite A" and "finite B" and "ALL a:A. EX b:B. R a b" -shows "EX b:B. ~finite{a:A. R a b}" + assumes "\ finite A" + and "finite B" + and "\a\A. \b\B. R a b" + shows "\b\B. \ finite {a:A. R a b}" proof - - let ?F = "%a. {b:B. R a b}" - from finite_Pow_iff[THEN iffD2, OF \finite B\] - have "finite(?F ` A)" by(blast intro: rev_finite_subset) - from pigeonhole_infinite[where f = ?F, OF assms(1) this] - obtain a0 where "a0\A" and 1: "\ finite {a\A. ?F a = ?F a0}" .. - obtain b0 where "b0 : B" and "R a0 b0" using \a0:A\ assms(3) by blast - { assume "finite{a:A. R a b0}" - then have "finite {a\A. ?F a = ?F a0}" - using \b0 : B\ \R a0 b0\ by(blast intro: rev_finite_subset) - } - with 1 \b0 : B\ show ?thesis by blast + let ?F = "\a. {b\B. R a b}" + from finite_Pow_iff[THEN iffD2, OF \finite B\] have "finite (?F ` A)" + by (blast intro: rev_finite_subset) + from pigeonhole_infinite [where f = ?F, OF assms(1) this] + obtain a0 where "a0 \ A" and 1: "\ finite {a\A. ?F a = ?F a0}" .. + obtain b0 where "b0 \ B" and "R a0 b0" + using \a0 \ A\ assms(3) by blast + have "finite {a\A. ?F a = ?F a0}" if "finite{a:A. R a b0}" + using \b0 \ B\ \R a0 b0\ that by (blast intro: rev_finite_subset) + with 1 \b0 : B\ show ?thesis + by blast qed subsubsection \Cardinality of sums\ lemma card_Plus: - assumes "finite A" and "finite B" + assumes "finite A" "finite B" shows "card (A <+> B) = card A + card B" proof - have "Inl`A \ Inr`B = {}" by fast with assms show ?thesis - unfolding Plus_def - by (simp add: card_Un_disjoint card_image) + by (simp add: Plus_def card_Un_disjoint card_image) qed lemma card_Plus_conv_if: "card (A <+> B) = (if finite A \ finite B then card A + card B else 0)" by (auto simp add: card_Plus) -text \Relates to equivalence classes. Based on a theorem of F. Kamm\"uller.\ +text \Relates to equivalence classes. Based on a theorem of F. Kammüller.\ lemma dvd_partition: - assumes f: "finite (\C)" and "\c\C. k dvd card c" "\c1\C. \c2\C. c1 \ c2 \ c1 \ c2 = {}" - shows "k dvd card (\C)" + assumes f: "finite (\C)" + and "\c\C. k dvd card c" "\c1\C. \c2\C. c1 \ c2 \ c1 \ c2 = {}" + shows "k dvd card (\C)" proof - - have "finite C" + have "finite C" by (rule finite_UnionD [OF f]) - then show ?thesis using assms + then show ?thesis + using assms proof (induct rule: finite_induct) - case empty show ?case by simp + case empty + show ?case by simp next - case (insert c C) - then show ?case + case insert + then show ?case apply simp apply (subst card_Un_disjoint) apply (auto simp add: disjoint_eq_subset_Compl) @@ -1793,34 +1874,33 @@ qed qed + subsubsection \Relating injectivity and surjectivity\ -lemma finite_surj_inj: assumes "finite A" "A \ f ` A" shows "inj_on f A" +lemma finite_surj_inj: + assumes "finite A" "A \ f ` A" + shows "inj_on f A" proof - - have "f ` A = A" + have "f ` A = A" by (rule card_seteq [THEN sym]) (auto simp add: assms card_image_le) then show ?thesis using assms by (simp add: eq_card_imp_inj_on) qed -lemma finite_UNIV_surj_inj: fixes f :: "'a \ 'a" -shows "finite(UNIV:: 'a set) \ surj f \ inj f" -by (blast intro: finite_surj_inj subset_UNIV) +lemma finite_UNIV_surj_inj: "finite(UNIV:: 'a set) \ surj f \ inj f" for f :: "'a \ 'a" + by (blast intro: finite_surj_inj subset_UNIV) -lemma finite_UNIV_inj_surj: fixes f :: "'a \ 'a" -shows "finite(UNIV:: 'a set) \ inj f \ surj f" -by(fastforce simp:surj_def dest!: endo_inj_surj) +lemma finite_UNIV_inj_surj: "finite(UNIV:: 'a set) \ inj f \ surj f" for f :: "'a \ 'a" + by (fastforce simp:surj_def dest!: endo_inj_surj) -corollary infinite_UNIV_nat [iff]: - "\ finite (UNIV :: nat set)" +corollary infinite_UNIV_nat [iff]: "\ finite (UNIV :: nat set)" proof assume "finite (UNIV :: nat set)" - with finite_UNIV_inj_surj [of Suc] - show False by simp (blast dest: Suc_neq_Zero surjD) + with finite_UNIV_inj_surj [of Suc] show False + by simp (blast dest: Suc_neq_Zero surjD) qed -lemma infinite_UNIV_char_0: - "\ finite (UNIV :: 'a::semiring_char_0 set)" +lemma infinite_UNIV_char_0: "\ finite (UNIV :: 'a::semiring_char_0 set)" proof assume "finite (UNIV :: 'a set)" with subset_UNIV have "finite (range of_nat :: 'a set)" @@ -1836,7 +1916,7 @@ hide_const (open) Finite_Set.fold -subsection "Infinite Sets" +subsection \Infinite Sets\ text \ Some elementary facts about infinite sets, mostly by Stephan Merz. @@ -1859,19 +1939,18 @@ by simp lemma Diff_infinite_finite: - assumes T: "finite T" and S: "infinite S" + assumes "finite T" "infinite S" shows "infinite (S - T)" - using T + using \finite T\ proof induct - from S - show "infinite (S - {})" by auto + from \infinite S\ show "infinite (S - {})" + by auto next fix T x assume ih: "infinite (S - T)" have "S - (insert x T) = (S - T) - {x}" by (rule Diff_insert) - with ih - show "infinite (S - (insert x T))" + with ih show "infinite (S - (insert x T))" by (simp add: infinite_remove) qed @@ -1882,21 +1961,23 @@ by simp lemma infinite_super: - assumes T: "S \ T" and S: "infinite S" + assumes "S \ T" + and "infinite S" shows "infinite T" proof assume "finite T" - with T have "finite S" by (simp add: finite_subset) - with S show False by simp + with \S \ T\ have "finite S" by (simp add: finite_subset) + with \infinite S\ show False by simp qed proposition infinite_coinduct [consumes 1, case_names infinite]: assumes "X A" - and step: "\A. X A \ \x\A. X (A - {x}) \ infinite (A - {x})" + and step: "\A. X A \ \x\A. X (A - {x}) \ infinite (A - {x})" shows "infinite A" proof assume "finite A" - then show False using \X A\ + then show False + using \X A\ proof (induction rule: finite_psubset_induct) case (psubset A) then obtain x where "x \ A" "X (A - {x}) \ infinite (A - {x})" @@ -1906,7 +1987,8 @@ show False apply (rule psubset.IH [where B = "A - {x}"]) using \x \ A\ apply blast - by (simp add: \X (A - {x})\) + apply (simp add: \X (A - {x})\) + done qed qed @@ -1918,14 +2000,14 @@ \ lemma inf_img_fin_dom': - assumes img: "finite (f ` A)" and dom: "infinite A" + assumes img: "finite (f ` A)" + and dom: "infinite A" shows "\y \ f ` A. infinite (f -` {y} \ A)" proof (rule ccontr) have "A \ (\y\f ` A. f -` {y} \ A)" by auto - moreover - assume "\ ?thesis" + moreover assume "\ ?thesis" with img have "finite (\y\f ` A. f -` {y} \ A)" by blast - ultimately have "finite A" by(rule finite_subset) + ultimately have "finite A" by (rule finite_subset) with dom show False by contradiction qed @@ -1937,16 +2019,15 @@ lemma inf_img_fin_dom: assumes img: "finite (f`A)" and dom: "infinite A" shows "\y \ f`A. infinite (f -` {y})" -using inf_img_fin_dom'[OF assms] by auto + using inf_img_fin_dom'[OF assms] by auto lemma inf_img_fin_domE: assumes "finite (f`A)" and "infinite A" obtains y where "y \ f`A" and "infinite (f -` {y})" using assms by (blast dest: inf_img_fin_dom) -proposition finite_image_absD: - fixes S :: "'a::linordered_ring set" - shows "finite (abs ` S) \ finite S" +proposition finite_image_absD: "finite (abs ` S) \ finite S" + for S :: "'a::linordered_ring set" by (rule ccontr) (auto simp: abs_eq_iff vimage_def dest: inf_img_fin_dom) end