diff -r ab988a7a8a3b -r a994b92ab1ea doc-src/TutorialI/Misc/document/natsum.tex --- a/doc-src/TutorialI/Misc/document/natsum.tex Fri May 09 17:19:58 2003 +0200 +++ b/doc-src/TutorialI/Misc/document/natsum.tex Fri May 09 18:00:30 2003 +0200 @@ -92,15 +92,13 @@ \isamarkupfalse% % \begin{isamarkuptext}% -\noindent -The method \methdx{arith} is more general. It attempts to prove -the first subgoal provided it is a quantifier-free \textbf{linear arithmetic} -formula. Such formulas may involve the -usual logical connectives (\isa{{\isasymnot}}, \isa{{\isasymand}}, \isa{{\isasymor}}, -\isa{{\isasymlongrightarrow}}), the relations \isa{{\isacharequal}}, \isa{{\isasymle}} and \isa{{\isacharless}}, -and the operations -\isa{{\isacharplus}}, \isa{{\isacharminus}}, \isa{min} and \isa{max}. -For example,% +\noindent The method \methdx{arith} is more general. It attempts to +prove the first subgoal provided it is a \textbf{linear arithmetic} formula. +Such formulas may involve the usual logical connectives (\isa{{\isasymnot}}, +\isa{{\isasymand}}, \isa{{\isasymor}}, \isa{{\isasymlongrightarrow}}, \isa{{\isacharequal}}, +\isa{{\isasymforall}}, \isa{{\isasymexists}}), the relations \isa{{\isacharequal}}, +\isa{{\isasymle}} and \isa{{\isacharless}}, and the operations \isa{{\isacharplus}}, \isa{{\isacharminus}}, +\isa{min} and \isa{max}. For example,% \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\ {\isachardoublequote}min\ i\ {\isacharparenleft}max\ j\ {\isacharparenleft}k{\isacharasterisk}k{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ max\ {\isacharparenleft}min\ {\isacharparenleft}k{\isacharasterisk}k{\isacharparenright}\ i{\isacharparenright}\ {\isacharparenleft}min\ i\ {\isacharparenleft}j{\isacharcolon}{\isacharcolon}nat{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline @@ -119,16 +117,19 @@ \begin{isamarkuptext}% \noindent is not proved even by \isa{arith} because the proof relies -on properties of multiplication. +on properties of multiplication. Only multiplication by numerals (which is +the same as iterated addition) is allowed. -\begin{warn} - The running time of \isa{arith} is exponential in the number of occurrences - of \ttindexboldpos{-}{$HOL2arithfun}, \cdx{min} and +\begin{warn} The running time of \isa{arith} is exponential in the number + of occurrences of \ttindexboldpos{-}{$HOL2arithfun}, \cdx{min} and \cdx{max} because they are first eliminated by case distinctions. - Even for linear arithmetic formulae, \isa{arith} is incomplete. If divisibility plays a - role, it may fail to prove a valid formula, for example - \isa{m{\isacharplus}m\ {\isasymnoteq}\ n{\isacharplus}n{\isacharplus}{\isacharparenleft}{\isadigit{1}}{\isacharcolon}{\isacharcolon}nat{\isacharparenright}}. Fortunately, such examples are rare. +If \isa{k} is a numeral, \sdx{div}~\isa{k}, \sdx{mod}~\isa{k} and +\isa{k}~\sdx{dvd} are also supported, where the former two are eliminated +by case distinctions, again blowing up the running time. + +If the formula involves explicit quantifiers, \isa{arith} may take +super-exponential time and space. \end{warn}% \end{isamarkuptext}% \isamarkuptrue%