diff -r d122c24a93d6 -r a99a7cbf0fb5 src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Tue Oct 24 10:59:15 2017 +0200 +++ b/src/HOL/Library/Float.thy Tue Oct 24 18:48:21 2017 +0200 @@ -1467,8 +1467,8 @@ using bitlen_bounds[of "\m2\"] by (auto simp: powr_add bitlen_nonneg) then show ?thesis - by (metis bitlen_nonneg powr_int of_int_abs real_of_int_less_numeral_power_cancel_iff - zero_less_numeral) + by (metis bitlen_nonneg powr_int of_int_abs of_int_less_numeral_power_cancel_iff + zero_less_numeral) qed lemma floor_sum_times_2_powr_sgn_eq: @@ -1570,7 +1570,7 @@ from this[simplified of_int_le_iff[symmetric]] \0 \ k\ have r_le: "r \ 2 powr k - 1" by (auto simp: algebra_simps powr_int) - (metis of_int_1 of_int_add real_of_int_le_numeral_power_cancel_iff) + (metis of_int_1 of_int_add of_int_le_numeral_power_cancel_iff) have "\ai\ = 2 powr k + r" using \k \ 0\ by (auto simp: k_def r_def powr_realpow[symmetric]) @@ -1981,7 +1981,7 @@ qed then have "real_of_int \x * 2 powr real_of_int (int prec - \log 2 x\)\ \ 2 powr int (Suc prec)" by (auto simp: powr_realpow powr_add) - (metis power_Suc real_of_int_le_numeral_power_cancel_iff) + (metis power_Suc of_int_le_numeral_power_cancel_iff) also have "2 powr - real_of_int (int prec - \log 2 x\) \ 2 powr - real_of_int (int prec - \log 2 y\ + 1)" using logless flogless by (auto intro!: floor_mono)