diff -r 7e3a026f014f -r aa74ce315bae src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Tue Aug 16 13:07:52 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Tue Aug 16 09:31:23 2011 -0700 @@ -1100,8 +1100,7 @@ unfolding continuous_on_def by (intro ballI tendsto_intros) lemma closed_positive_orthant: "closed {x::real^'n. \i. 0 \x$i}" - unfolding Collect_all_eq - by (intro closed_INT ballI closed_Collect_le isCont_const vec_nth.isCont) + by (simp add: Collect_all_eq closed_INT closed_Collect_le) lemma Lim_component_cart: fixes f :: "'a \ 'b::metric_space ^ 'n" @@ -1287,13 +1286,11 @@ lemma closed_interval_left_cart: fixes b::"real^'n" shows "closed {x::real^'n. \i. x$i \ b$i}" - unfolding Collect_all_eq - by (intro closed_INT ballI closed_Collect_le isCont_const vec_nth.isCont) + by (simp add: Collect_all_eq closed_INT closed_Collect_le) lemma closed_interval_right_cart: fixes a::"real^'n" shows "closed {x::real^'n. \i. a$i \ x$i}" - unfolding Collect_all_eq - by (intro closed_INT ballI closed_Collect_le isCont_const vec_nth.isCont) + by (simp add: Collect_all_eq closed_INT closed_Collect_le) lemma is_interval_cart:"is_interval (s::(real^'n) set) \ (\a\s. \b\s. \x. (\i. ((a$i \ x$i \ x$i \ b$i) \ (b$i \ x$i \ x$i \ a$i))) \ x \ s)" @@ -1301,19 +1298,19 @@ lemma closed_halfspace_component_le_cart: shows "closed {x::real^'n. x$i \ a}" - by (intro closed_Collect_le vec_nth.isCont isCont_const) + by (simp add: closed_Collect_le) lemma closed_halfspace_component_ge_cart: shows "closed {x::real^'n. x$i \ a}" - by (intro closed_Collect_le vec_nth.isCont isCont_const) + by (simp add: closed_Collect_le) lemma open_halfspace_component_lt_cart: shows "open {x::real^'n. x$i < a}" - by (intro open_Collect_less vec_nth.isCont isCont_const) + by (simp add: open_Collect_less) lemma open_halfspace_component_gt_cart: shows "open {x::real^'n. x$i > a}" - by (intro open_Collect_less vec_nth.isCont isCont_const) + by (simp add: open_Collect_less) lemma Lim_component_le_cart: fixes f :: "'a \ real^'n" assumes "(f ---> l) net" "\ (trivial_limit net)" "eventually (\x. f(x)$i \ b) net" @@ -1352,8 +1349,7 @@ proof- { fix i::'n have "closed {x::'a ^ 'n. P i \ x$i = 0}" - by (cases "P i", simp_all, - intro closed_Collect_eq vec_nth.isCont isCont_const) } + by (cases "P i", simp_all add: closed_Collect_eq) } thus ?thesis unfolding Collect_all_eq by (simp add: closed_INT) qed