diff -r 77645da0db85 -r aaca6a8e5414 src/HOL/NatBin.thy --- a/src/HOL/NatBin.thy Thu Jun 14 18:33:29 2007 +0200 +++ b/src/HOL/NatBin.thy Thu Jun 14 18:33:31 2007 +0200 @@ -376,13 +376,13 @@ "(a::'a::{ordered_idom,recpower}) < 0 ==> a ^ Suc(2*n) < 0" proof (induct "n") case 0 - show ?case by (simp add: Power.power_Suc) + then show ?case by (simp add: Power.power_Suc) next case (Suc n) - have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" - by (simp add: mult_ac power_add power2_eq_square Power.power_Suc) - thus ?case - by (simp add: prems mult_less_0_iff mult_neg_neg) + have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" + by (simp add: mult_ac power_add power2_eq_square Power.power_Suc) + thus ?case + by (simp add: prems mult_less_0_iff mult_neg_neg) qed lemma odd_0_le_power_imp_0_le: