diff -r b46fe5138cb0 -r ab7e11730ad8 src/HOL/Analysis/Bounded_Continuous_Function.thy --- a/src/HOL/Analysis/Bounded_Continuous_Function.thy Sun Feb 19 11:58:51 2017 +0100 +++ b/src/HOL/Analysis/Bounded_Continuous_Function.thy Tue Feb 21 15:04:01 2017 +0000 @@ -190,9 +190,9 @@ have "g \ bcontfun" \ \The limit function is bounded and continuous\ proof (intro bcontfunI) show "continuous_on UNIV g" - using bcontfunE[OF Rep_bcontfun] limit_function - by (intro continuous_uniform_limit[where f="\n. Rep_bcontfun (f n)" and F="sequentially"]) - (auto simp add: eventually_sequentially trivial_limit_def dist_norm) + apply (rule bcontfunE[OF Rep_bcontfun]) + using limit_function + by (auto simp add: uniform_limit_sequentially_iff intro: uniform_limit_theorem[where f="\n. Rep_bcontfun (f n)" and F="sequentially"]) next fix x from fg_dist have "dist (g x) (Rep_bcontfun (f N) x) < 1"