diff -r b46fe5138cb0 -r ab7e11730ad8 src/HOL/Topological_Spaces.thy --- a/src/HOL/Topological_Spaces.thy Sun Feb 19 11:58:51 2017 +0100 +++ b/src/HOL/Topological_Spaces.thy Tue Feb 21 15:04:01 2017 +0000 @@ -468,9 +468,9 @@ "eventually P (nhds a) \ (\S. open S \ a \ S \ (\x\S. P x))" unfolding nhds_def by (subst eventually_INF_base) (auto simp: eventually_principal) -lemma eventually_eventually: +lemma eventually_eventually: "eventually (\y. eventually P (nhds y)) (nhds x) = eventually P (nhds x)" - by (auto simp: eventually_nhds) + by (auto simp: eventually_nhds) lemma (in topological_space) eventually_nhds_in_open: "open s \ x \ s \ eventually (\y. y \ s) (nhds x)" @@ -1050,6 +1050,12 @@ definition subseq :: "(nat \ nat) \ bool" where "subseq f \ (\m. \n>m. f m < f n)" +lemma subseq_le_mono: "subseq r \ m \ n \ r m \ r n" + by (simp add: less_mono_imp_le_mono subseq_def) + +lemma subseq_id: "subseq id" + by (simp add: subseq_def) + lemma incseq_SucI: "(\n. X n \ X (Suc n)) \ incseq X" using lift_Suc_mono_le[of X] by (auto simp: incseq_def) @@ -1818,6 +1824,12 @@ by (rule continuous_on_closed_Un) qed +lemma continuous_on_cases: + "closed s \ closed t \ continuous_on s f \ continuous_on t g \ + \x. (x\s \ \ P x) \ (x \ t \ P x) \ f x = g x \ + continuous_on (s \ t) (\x. if P x then f x else g x)" + by (rule continuous_on_If) auto + lemma continuous_on_id[continuous_intros]: "continuous_on s (\x. x)" unfolding continuous_on_def by fast