diff -r e2fcd88be55d -r ab8f39f48a6f src/HOL/UNITY/PPROD.ML --- a/src/HOL/UNITY/PPROD.ML Fri Jan 24 14:06:49 2003 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,281 +0,0 @@ -(* Title: HOL/UNITY/PPROD.ML - ID: $Id$ - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1999 University of Cambridge - -Abstraction over replicated components (PLam) -General products of programs (Pi operation) - -Some dead wood here! -*) - -(*** Basic properties ***) - -Goal "Init (PLam I F) = (INT i:I. lift_set i (Init (F i)))"; -by (simp_tac (simpset() addsimps [PLam_def, lift_def, lift_set_def]) 1); -qed "Init_PLam"; - -Addsimps [Init_PLam]; - -Goal "PLam {} F = SKIP"; -by (simp_tac (simpset() addsimps [PLam_def]) 1); -qed "PLam_empty"; - -Goal "(plam i: I. SKIP) = SKIP"; -by (simp_tac (simpset() addsimps [PLam_def,lift_SKIP,JN_constant]) 1); -qed "PLam_SKIP"; - -Addsimps [PLam_SKIP, PLam_empty]; - -Goalw [PLam_def] "PLam (insert i I) F = (lift i (F i)) Join (PLam I F)"; -by Auto_tac; -qed "PLam_insert"; - -Goal "((PLam I F) <= H) = (ALL i: I. lift i (F i) <= H)"; -by (simp_tac (simpset() addsimps [PLam_def, JN_component_iff]) 1); -qed "PLam_component_iff"; - -Goalw [PLam_def] "i : I ==> lift i (F i) <= (PLam I F)"; -(*blast_tac doesn't use HO unification*) -by (fast_tac (claset() addIs [component_JN]) 1); -qed "component_PLam"; - - -(** Safety & Progress: but are they used anywhere? **) - -Goal "[| i : I; ALL j. F j : preserves snd |] ==> \ -\ (PLam I F : (lift_set i (A <*> UNIV)) co \ -\ (lift_set i (B <*> UNIV))) = \ -\ (F i : (A <*> UNIV) co (B <*> UNIV))"; -by (asm_simp_tac (simpset() addsimps [PLam_def, JN_constrains]) 1); -by (stac (insert_Diff RS sym) 1 THEN assume_tac 1); -by (asm_simp_tac (simpset() addsimps [lift_constrains]) 1); -by (blast_tac (claset() addIs [constrains_imp_lift_constrains]) 1); -qed "PLam_constrains"; - -Goal "[| i : I; ALL j. F j : preserves snd |] \ -\ ==> (PLam I F : stable (lift_set i (A <*> UNIV))) = \ -\ (F i : stable (A <*> UNIV))"; -by (asm_simp_tac (simpset() addsimps [stable_def, PLam_constrains]) 1); -qed "PLam_stable"; - -Goal "i : I ==> \ -\ PLam I F : transient A = (EX i:I. lift i (F i) : transient A)"; -by (asm_simp_tac (simpset() addsimps [JN_transient, PLam_def]) 1); -qed "PLam_transient"; - -(*This holds because the F j cannot change (lift_set i)*) -Goal "[| i : I; F i : (A <*> UNIV) ensures (B <*> UNIV); \ -\ ALL j. F j : preserves snd |] ==> \ -\ PLam I F : lift_set i (A <*> UNIV) ensures lift_set i (B <*> UNIV)"; -by (auto_tac (claset(), - simpset() addsimps [ensures_def, PLam_constrains, PLam_transient, - lift_transient_eq_disj, - lift_set_Un_distrib RS sym, - lift_set_Diff_distrib RS sym, - Times_Un_distrib1 RS sym, - Times_Diff_distrib1 RS sym])); -qed "PLam_ensures"; - -Goal "[| i : I; \ -\ F i : ((A <*> UNIV) - (B <*> UNIV)) co \ -\ ((A <*> UNIV) Un (B <*> UNIV)); \ -\ F i : transient ((A <*> UNIV) - (B <*> UNIV)); \ -\ ALL j. F j : preserves snd |] ==> \ -\ PLam I F : lift_set i (A <*> UNIV) leadsTo lift_set i (B <*> UNIV)"; -by (rtac (PLam_ensures RS leadsTo_Basis) 1); -by (rtac ensuresI 2); -by (ALLGOALS assume_tac); -qed "PLam_leadsTo_Basis"; - - -(** invariant **) - -Goal "[| F i : invariant (A <*> UNIV); i : I; \ -\ ALL j. F j : preserves snd |] \ -\ ==> PLam I F : invariant (lift_set i (A <*> UNIV))"; -by (auto_tac (claset(), - simpset() addsimps [PLam_stable, invariant_def])); -qed "invariant_imp_PLam_invariant"; - - -Goal "ALL j. F j : preserves snd \ -\ ==> (PLam I F : preserves (v o sub j o fst)) = \ -\ (if j: I then F j : preserves (v o fst) else True)"; -by (asm_simp_tac (simpset() addsimps [PLam_def, lift_preserves_sub]) 1); -qed "PLam_preserves_fst"; -Addsimps [PLam_preserves_fst]; - -Goal "ALL j. F j : preserves snd ==> PLam I F : preserves snd"; -by (asm_simp_tac (simpset() addsimps [PLam_def, lift_preserves_snd_I]) 1); -qed "PLam_preserves_snd"; -Addsimps [PLam_preserves_snd]; -AddIs [PLam_preserves_snd]; - - -(*** guarantees properties ***) - -(*This rule looks unsatisfactory because it refers to "lift". One must use - lift_guarantees_eq_lift_inv to rewrite the first subgoal and - something like lift_preserves_sub to rewrite the third. However there's - no obvious way to alternative for the third premise.*) -Goalw [PLam_def] - "[| lift i (F i): X guarantees Y; i : I; \ -\ OK I (%i. lift i (F i)) |] \ -\ ==> (PLam I F) : X guarantees Y"; -by (asm_simp_tac (simpset() addsimps [guarantees_JN_I]) 1); -qed "guarantees_PLam_I"; - -Goal "Allowed (PLam I F) = (INT i:I. lift i ` Allowed(F i))"; -by (simp_tac (simpset() addsimps [PLam_def]) 1); -qed "Allowed_PLam"; -Addsimps [Allowed_PLam]; - -Goal "(PLam I F) : preserves v = (ALL i:I. F i : preserves (v o lift_map i))"; -by (simp_tac (simpset() addsimps [PLam_def, lift_def, rename_preserves]) 1); -qed "PLam_preserves"; -Addsimps [PLam_preserves]; - -(**UNUSED - (*The f0 premise ensures that the product is well-defined.*) - Goal "[| PLam I F : invariant (lift_set i A); i : I; \ - \ f0: Init (PLam I F) |] ==> F i : invariant A"; - by (auto_tac (claset(), - simpset() addsimps [invariant_def])); - by (dres_inst_tac [("c", "f0(i:=x)")] subsetD 1); - by Auto_tac; - qed "PLam_invariant_imp_invariant"; - - Goal "[| i : I; f0: Init (PLam I F) |] \ - \ ==> (PLam I F : invariant (lift_set i A)) = (F i : invariant A)"; - by (blast_tac (claset() addIs [invariant_imp_PLam_invariant, - PLam_invariant_imp_invariant]) 1); - qed "PLam_invariant"; - - (*The f0 premise isn't needed if F is a constant program because then - we get an initial state by replicating that of F*) - Goal "i : I \ - \ ==> ((plam x:I. F) : invariant (lift_set i A)) = (F : invariant A)"; - by (auto_tac (claset(), - simpset() addsimps [invariant_def])); - qed "const_PLam_invariant"; -**) - - -(**UNUSED - (** Reachability **) - - Goal "[| f : reachable (PLam I F); i : I |] ==> f i : reachable (F i)"; - by (etac reachable.induct 1); - by (auto_tac (claset() addIs reachable.intrs, simpset())); - qed "reachable_PLam"; - - (*Result to justify a re-organization of this file*) - Goal "{f. ALL i:I. f i : R i} = (INT i:I. lift_set i (R i))"; - by Auto_tac; - result(); - - Goal "reachable (PLam I F) <= (INT i:I. lift_set i (reachable (F i)))"; - by (force_tac (claset() addSDs [reachable_PLam], simpset()) 1); - qed "reachable_PLam_subset1"; - - (*simplify using reachable_lift??*) - Goal "[| i ~: I; A : reachable (F i) |] \ - \ ==> ALL f. f : reachable (PLam I F) \ - \ --> f(i:=A) : reachable (lift i (F i) Join PLam I F)"; - by (etac reachable.induct 1); - by (ALLGOALS Clarify_tac); - by (etac reachable.induct 1); - (*Init, Init case*) - by (force_tac (claset() addIs reachable.intrs, simpset()) 1); - (*Init of F, action of PLam F case*) - by (res_inst_tac [("act","act")] reachable.Acts 1); - by (Force_tac 1); - by (assume_tac 1); - by (force_tac (claset() addIs [ext], simpset()) 1); - (*induction over the 2nd "reachable" assumption*) - by (eres_inst_tac [("xa","f")] reachable.induct 1); - (*Init of PLam F, action of F case*) - by (res_inst_tac [("act","lift_act i act")] reachable.Acts 1); - by (Force_tac 1); - by (force_tac (claset() addIs [reachable.Init], simpset()) 1); - by (force_tac (claset() addIs [ext], simpset() addsimps [lift_act_def]) 1); - (*last case: an action of PLam I F*) - by (res_inst_tac [("act","acta")] reachable.Acts 1); - by (Force_tac 1); - by (assume_tac 1); - by (force_tac (claset() addIs [ext], simpset()) 1); - qed_spec_mp "reachable_lift_Join_PLam"; - - - (*The index set must be finite: otherwise infinitely many copies of F can - perform actions, and PLam can never catch up in finite time.*) - Goal "finite I \ - \ ==> (INT i:I. lift_set i (reachable (F i))) <= reachable (PLam I F)"; - by (etac finite_induct 1); - by (Simp_tac 1); - by (force_tac (claset() addDs [reachable_lift_Join_PLam], - simpset() addsimps [PLam_insert]) 1); - qed "reachable_PLam_subset2"; - - Goal "finite I ==> \ - \ reachable (PLam I F) = (INT i:I. lift_set i (reachable (F i)))"; - by (REPEAT_FIRST (ares_tac [equalityI, - reachable_PLam_subset1, - reachable_PLam_subset2])); - qed "reachable_PLam_eq"; - - - (** Co **) - - Goal "[| F i : A Co B; i: I; finite I |] \ - \ ==> PLam I F : (lift_set i A) Co (lift_set i B)"; - by (auto_tac - (claset(), - simpset() addsimps [Constrains_def, Collect_conj_eq RS sym, - reachable_PLam_eq])); - by (auto_tac (claset(), - simpset() addsimps [constrains_def, PLam_def])); - by (REPEAT (blast_tac (claset() addIs reachable.intrs) 1)); - qed "Constrains_imp_PLam_Constrains"; - - - - Goal "[| i: I; finite I; f0: Init (PLam I F) |] \ - \ ==> (PLam I F : (lift_set i A) Co (lift_set i B)) = \ - \ (F i : A Co B)"; - by (blast_tac (claset() addIs [Constrains_imp_PLam_Constrains, - PLam_Constrains_imp_Constrains]) 1); - qed "PLam_Constrains"; - - Goal "[| i: I; finite I; f0: Init (PLam I F) |] \ - \ ==> (PLam I F : Stable (lift_set i A)) = (F i : Stable A)"; - by (asm_simp_tac (simpset() delsimps [Init_PLam] - addsimps [Stable_def, PLam_Constrains]) 1); - qed "PLam_Stable"; - - - (** const_PLam (no dependence on i) doesn't require the f0 premise **) - - Goal "[| i: I; finite I |] \ - \ ==> ((plam x:I. F) : (lift_set i A) Co (lift_set i B)) = \ - \ (F : A Co B)"; - by (blast_tac (claset() addIs [Constrains_imp_PLam_Constrains, - const_PLam_Constrains_imp_Constrains]) 1); - qed "const_PLam_Constrains"; - - Goal "[| i: I; finite I |] \ - \ ==> ((plam x:I. F) : Stable (lift_set i A)) = (F : Stable A)"; - by (asm_simp_tac (simpset() addsimps [Stable_def, const_PLam_Constrains]) 1); - qed "const_PLam_Stable"; - - Goalw [Increasing_def] - "[| i: I; finite I |] \ - \ ==> ((plam x:I. F) : Increasing (f o sub i)) = (F : Increasing f)"; - by (subgoal_tac "ALL z. {s. z <= (f o sub i) s} = lift_set i {s. z <= f s}" 1); - by (asm_simp_tac (simpset() addsimps [lift_set_sub]) 2); - by (asm_full_simp_tac - (simpset() addsimps [finite_lessThan, const_PLam_Stable]) 1); - qed "const_PLam_Increasing"; -**) -