diff -r c6f35921056e -r ab93d0190a5d src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy --- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Tue Jul 19 14:37:49 2011 +0200 +++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Tue Jul 19 14:38:29 2011 +0200 @@ -163,6 +163,7 @@ qed lemma ereal_open_affinity_pos: + fixes S :: "ereal set" assumes "open S" and m: "m \ \" "0 < m" and t: "\t\ \ \" shows "open ((\x. m * x + t) ` S)" proof - @@ -209,6 +210,7 @@ qed lemma ereal_open_affinity: + fixes S :: "ereal set" assumes "open S" and m: "\m\ \ \" "m \ 0" and t: "\t\ \ \" shows "open ((\x. m * x + t) ` S)" proof cases @@ -268,7 +270,7 @@ qed -lemma ereal_open_atLeast: "open {x..} \ x = -\" +lemma ereal_open_atLeast: fixes x :: ereal shows "open {x..} \ x = -\" proof assume "x = -\" then have "{x..} = UNIV" by auto then show "open {x..}" by auto @@ -384,7 +386,7 @@ shows "(f ---> \) net \ Liminf net f = \" proof (intro lim_imp_Liminf iffI assms) assume rhs: "Liminf net f = \" - { fix S assume "open S & \ : S" + { fix S :: "ereal set" assume "open S & \ : S" then obtain m where "{ereal m<..} <= S" using open_PInfty2 by auto moreover have "eventually (\x. f x \ {ereal m<..}) net" using rhs unfolding Liminf_Sup top_ereal_def[symmetric] Sup_eq_top_iff @@ -893,7 +895,7 @@ using continuous_at_iff_ereal assms by (auto simp add: continuous_on_eq_continuous_at) -lemma continuous_on_real: "continuous_on (UNIV-{\,(-\)}) real" +lemma continuous_on_real: "continuous_on (UNIV-{\,(-\::ereal)}) real" using continuous_at_of_ereal continuous_on_eq_continuous_at open_image_ereal by auto @@ -1001,7 +1003,9 @@ assume "finite A" then show ?thesis by induct auto qed simp -lemma setsum_Pinfty: "(\x\P. f x) = \ \ (finite P \ (\i\P. f i = \))" +lemma setsum_Pinfty: + fixes f :: "'a \ ereal" + shows "(\x\P. f x) = \ \ (finite P \ (\i\P. f i = \))" proof safe assume *: "setsum f P = \" show "finite P" @@ -1023,6 +1027,7 @@ qed lemma setsum_Inf: + fixes f :: "'a \ ereal" shows "\setsum f A\ = \ \ (finite A \ (\i\A. \f i\ = \))" proof assume *: "\setsum f A\ = \" @@ -1045,6 +1050,7 @@ qed lemma setsum_real_of_ereal: + fixes f :: "'i \ ereal" assumes "\x. x \ S \ \f x\ \ \" shows "(\x\S. real (f x)) = real (setsum f S)" proof - @@ -1186,6 +1192,7 @@ intro!: SUPR_ereal_cmult ) lemma suminf_PInfty: + fixes f :: "nat \ ereal" assumes "\i. 0 \ f i" "suminf f \ \" shows "f i \ \" proof - @@ -1253,13 +1260,14 @@ qed lemma suminf_ereal_PInf[simp]: - "(\x. \) = \" + "(\x. \::ereal) = \" proof - - have "(\i) \ (\x. \)" by (rule suminf_upper) auto + have "(\i) \ (\x. \::ereal)" by (rule suminf_upper) auto then show ?thesis by simp qed lemma summable_real_of_ereal: + fixes f :: "nat \ ereal" assumes f: "\i. 0 \ f i" and fin: "(\i. f i) \ \" shows "summable (\i. real (f i))" proof (rule summable_def[THEN iffD2])