diff -r 8bcc8809ed3b -r abfdccaed085 src/HOL/ex/Classical.thy --- a/src/HOL/ex/Classical.thy Thu Apr 19 16:38:59 2007 +0200 +++ b/src/HOL/ex/Classical.thy Thu Apr 19 18:23:11 2007 +0200 @@ -849,19 +849,19 @@ by (meson equalityI 2) have 11: "!!U V. U \ S | V \ S | V = U" by (meson 10 2) - have 13: "!!U V. U \ S | S \ V | U = Set_XsubsetI_sko1_ S V" + have 13: "!!U V. U \ S | S \ V | U = sko_Set_XsubsetI_1_ S V" by (meson subsetI 11) - have 14: "!!U V. S \ U | S \ V | Set_XsubsetI_sko1_ S U = Set_XsubsetI_sko1_ S V" + have 14: "!!U V. S \ U | S \ V | sko_Set_XsubsetI_1_ S U = sko_Set_XsubsetI_1_ S V" by (meson subsetI 13) - have 29: "!!U V. S \ U | Set_XsubsetI_sko1_ S U = Set_XsubsetI_sko1_ S {V}" + have 29: "!!U V. S \ U | sko_Set_XsubsetI_1_ S U = sko_Set_XsubsetI_1_ S {V}" by (meson 1 14) - have 58: "!!U V. Set_XsubsetI_sko1_ S {U} = Set_XsubsetI_sko1_ S {V}" + have 58: "!!U V. sko_Set_XsubsetI_1_ S {U} = sko_Set_XsubsetI_1_ S {V}" by (meson 1 29) (*hacked here while we wait for Metis: !!U V complicates proofs.*) - have 82: "Set_XsubsetI_sko1_ S {U} \ {V} | S \ {V}" + have 82: "sko_Set_XsubsetI_1_ S {U} \ {V} | S \ {V}" apply (insert 58 [of U V], erule ssubst) by (meson 58 subsetI) - have 85: "Set_XsubsetI_sko1_ S {U} \ {V}" + have 85: "sko_Set_XsubsetI_1_ S {U} \ {V}" by (meson 1 82) show False by (meson insertI1 85) @@ -874,12 +874,12 @@ fix S :: "'a set set" assume 1: "\Z. ~ (S \ {Z})" and 2: "\X Y. X \ S | Y \ S | X \ Y" - have 13: "!!U V. U \ S | S \ V | U = Set_XsubsetI_sko1_ S V" + have 13: "!!U V. U \ S | S \ V | U = sko_Set_XsubsetI_1_ S V" by (meson subsetI equalityI 2) - have 58: "!!U V. Set_XsubsetI_sko1_ S {U} = Set_XsubsetI_sko1_ S {V}" + have 58: "!!U V. sko_Set_XsubsetI_1_ S {U} = sko_Set_XsubsetI_1_ S {V}" by (meson 1 subsetI 13) (*hacked here while we wait for Metis: !!U V complicates proofs.*) - have 82: "Set_XsubsetI_sko1_ S {U} \ {V} | S \ {V}" + have 82: "sko_Set_XsubsetI_1_ S {U} \ {V} | S \ {V}" apply (insert 58 [of U V], erule ssubst) by (meson 58 subsetI) show False @@ -893,7 +893,7 @@ fix S :: "'a set set" assume 1: "\Z. ~ (S \ {Z})" and 2: "\X Y. X \ S | Y \ S | X \ Y" - have 58: "!!U V. Set_XsubsetI_sko1_ S {U} = Set_XsubsetI_sko1_ S {V}" + have 58: "!!U V. sko_Set_XsubsetI_1_ S {U} = sko_Set_XsubsetI_1_ S {V}" by (meson 1 subsetI_0 equalityI 2) show False by (iprover intro: subsetI_1 insertI1 1 58 elim: ssubst)