diff -r 54da920baf38 -r ac15a85e9282 doc-src/Main/Main_Doc.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/Main/Main_Doc.thy Mon Aug 27 21:30:18 2012 +0200 @@ -0,0 +1,596 @@ +(*<*) +theory Main_Doc +imports Main +begin + +setup {* + let + fun pretty_term_type_only ctxt (t, T) = + (if fastype_of t = Sign.certify_typ (Proof_Context.theory_of ctxt) T then () + else error "term_type_only: type mismatch"; + Syntax.pretty_typ ctxt T) + in + Thy_Output.antiquotation @{binding term_type_only} + (Args.term -- Args.typ_abbrev) + (fn {source, context = ctxt, ...} => fn arg => + Thy_Output.output ctxt + (Thy_Output.maybe_pretty_source pretty_term_type_only ctxt source [arg])) + end +*} +setup {* + Thy_Output.antiquotation @{binding expanded_typ} (Args.typ >> single) + (fn {source, context, ...} => Thy_Output.output context o + Thy_Output.maybe_pretty_source Syntax.pretty_typ context source) +*} +(*>*) +text{* + +\begin{abstract} +This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. The sophisticated class structure is only hinted at. For details see \url{http://isabelle.in.tum.de/library/HOL/}. +\end{abstract} + +\section{HOL} + +The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop"Not P"}, @{prop"P & Q"}, @{prop "P | Q"}, @{prop "P --> Q"}, @{prop"ALL x. P"}, @{prop"EX x. P"}, @{prop"EX! x. P"}, @{term"THE x. P"}. +\smallskip + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const HOL.undefined} & @{typeof HOL.undefined}\\ +@{const HOL.default} & @{typeof HOL.default}\\ +\end{tabular} + +\subsubsection*{Syntax} + +\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}} +@{term"~(x = y)"} & @{term[source]"\ (x = y)"} & (\verb$~=$)\\ +@{term[source]"P \ Q"} & @{term"P \ Q"} \\ +@{term"If x y z"} & @{term[source]"If x y z"}\\ +@{term"Let e\<^isub>1 (%x. e\<^isub>2)"} & @{term[source]"Let e\<^isub>1 (\x. e\<^isub>2)"}\\ +\end{supertabular} + + +\section{Orderings} + +A collection of classes defining basic orderings: +preorder, partial order, linear order, dense linear order and wellorder. +\smallskip + +\begin{supertabular}{@ {} l @ {~::~} l l @ {}} +@{const Orderings.less_eq} & @{typeof Orderings.less_eq} & (\verb$<=$)\\ +@{const Orderings.less} & @{typeof Orderings.less}\\ +@{const Orderings.Least} & @{typeof Orderings.Least}\\ +@{const Orderings.min} & @{typeof Orderings.min}\\ +@{const Orderings.max} & @{typeof Orderings.max}\\ +@{const[source] top} & @{typeof Orderings.top}\\ +@{const[source] bot} & @{typeof Orderings.bot}\\ +@{const Orderings.mono} & @{typeof Orderings.mono}\\ +@{const Orderings.strict_mono} & @{typeof Orderings.strict_mono}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}} +@{term[source]"x \ y"} & @{term"x \ y"} & (\verb$>=$)\\ +@{term[source]"x > y"} & @{term"x > y"}\\ +@{term"ALL x<=y. P"} & @{term[source]"\x. x \ y \ P"}\\ +@{term"EX x<=y. P"} & @{term[source]"\x. x \ y \ P"}\\ +\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\ +@{term"LEAST x. P"} & @{term[source]"Least (\x. P)"}\\ +\end{supertabular} + + +\section{Lattices} + +Classes semilattice, lattice, distributive lattice and complete lattice (the +latter in theory @{theory Set}). + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Lattices.inf} & @{typeof Lattices.inf}\\ +@{const Lattices.sup} & @{typeof Lattices.sup}\\ +@{const Complete_Lattices.Inf} & @{term_type_only Complete_Lattices.Inf "'a set \ 'a::Inf"}\\ +@{const Complete_Lattices.Sup} & @{term_type_only Complete_Lattices.Sup "'a set \ 'a::Sup"}\\ +\end{tabular} + +\subsubsection*{Syntax} + +Available by loading theory @{text Lattice_Syntax} in directory @{text +Library}. + +\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{text[source]"x \ y"} & @{term"x \ y"}\\ +@{text[source]"x \ y"} & @{term"x < y"}\\ +@{text[source]"x \ y"} & @{term"inf x y"}\\ +@{text[source]"x \ y"} & @{term"sup x y"}\\ +@{text[source]"\ A"} & @{term"Sup A"}\\ +@{text[source]"\ A"} & @{term"Inf A"}\\ +@{text[source]"\"} & @{term[source] top}\\ +@{text[source]"\"} & @{term[source] bot}\\ +\end{supertabular} + + +\section{Set} + +%Sets are predicates: @{text[source]"'a set = 'a \ bool"} +%\bigskip + +\begin{supertabular}{@ {} l @ {~::~} l l @ {}} +@{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\ +@{const Set.insert} & @{term_type_only insert "'a\'a set\'a set"}\\ +@{const Collect} & @{term_type_only Collect "('a\bool)\'a set"}\\ +@{const Set.member} & @{term_type_only Set.member "'a\'a set\bool"} & (\texttt{:})\\ +@{const Set.union} & @{term_type_only Set.union "'a set\'a set \ 'a set"} & (\texttt{Un})\\ +@{const Set.inter} & @{term_type_only Set.inter "'a set\'a set \ 'a set"} & (\texttt{Int})\\ +@{const UNION} & @{term_type_only UNION "'a set\('a \ 'b set) \ 'b set"}\\ +@{const INTER} & @{term_type_only INTER "'a set\('a \ 'b set) \ 'b set"}\\ +@{const Union} & @{term_type_only Union "'a set set\'a set"}\\ +@{const Inter} & @{term_type_only Inter "'a set set\'a set"}\\ +@{const Pow} & @{term_type_only Pow "'a set \'a set set"}\\ +@{const UNIV} & @{term_type_only UNIV "'a set"}\\ +@{const image} & @{term_type_only image "('a\'b)\'a set\'b set"}\\ +@{const Ball} & @{term_type_only Ball "'a set\('a\bool)\bool"}\\ +@{const Bex} & @{term_type_only Bex "'a set\('a\bool)\bool"}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}} +@{text"{x\<^isub>1,\,x\<^isub>n}"} & @{text"insert x\<^isub>1 (\ (insert x\<^isub>n {})\)"}\\ +@{term"x ~: A"} & @{term[source]"\(x \ A)"}\\ +@{term"A \ B"} & @{term[source]"A \ B"}\\ +@{term"A \ B"} & @{term[source]"A < B"}\\ +@{term[source]"A \ B"} & @{term[source]"B \ A"}\\ +@{term[source]"A \ B"} & @{term[source]"B < A"}\\ +@{term"{x. P}"} & @{term[source]"Collect (\x. P)"}\\ +@{term[mode=xsymbols]"UN x:I. A"} & @{term[source]"UNION I (\x. A)"} & (\texttt{UN})\\ +@{term[mode=xsymbols]"UN x. A"} & @{term[source]"UNION UNIV (\x. A)"}\\ +@{term[mode=xsymbols]"INT x:I. A"} & @{term[source]"INTER I (\x. A)"} & (\texttt{INT})\\ +@{term[mode=xsymbols]"INT x. A"} & @{term[source]"INTER UNIV (\x. A)"}\\ +@{term"ALL x:A. P"} & @{term[source]"Ball A (\x. P)"}\\ +@{term"EX x:A. P"} & @{term[source]"Bex A (\x. P)"}\\ +@{term"range f"} & @{term[source]"f ` UNIV"}\\ +\end{supertabular} + + +\section{Fun} + +\begin{supertabular}{@ {} l @ {~::~} l l @ {}} +@{const "Fun.id"} & @{typeof Fun.id}\\ +@{const "Fun.comp"} & @{typeof Fun.comp} & (\texttt{o})\\ +@{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\'b)\'a set\bool"}\\ +@{const "Fun.inj"} & @{typeof Fun.inj}\\ +@{const "Fun.surj"} & @{typeof Fun.surj}\\ +@{const "Fun.bij"} & @{typeof Fun.bij}\\ +@{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\'b)\'a set\'b set\bool"}\\ +@{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\ +@{text"f(x\<^isub>1:=y\<^isub>1,\,x\<^isub>n:=y\<^isub>n)"} & @{text"f(x\<^isub>1:=y\<^isub>1)\(x\<^isub>n:=y\<^isub>n)"}\\ +\end{tabular} + + +\section{Hilbert\_Choice} + +Hilbert's selection ($\varepsilon$) operator: @{term"SOME x. P"}. +\smallskip + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Hilbert_Choice.inv_into} & @{term_type_only Hilbert_Choice.inv_into "'a set \ ('a \ 'b) \ ('b \ 'a)"} +\end{tabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{term inv} & @{term[source]"inv_into UNIV"} +\end{tabular} + +\section{Fixed Points} + +Theory: @{theory Inductive}. + +Least and greatest fixed points in a complete lattice @{typ 'a}: + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Inductive.lfp} & @{typeof Inductive.lfp}\\ +@{const Inductive.gfp} & @{typeof Inductive.gfp}\\ +\end{tabular} + +Note that in particular sets (@{typ"'a \ bool"}) are complete lattices. + +\section{Sum\_Type} + +Type constructor @{text"+"}. + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\ +@{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\ +@{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\'b set\('a+'b)set"} +\end{tabular} + + +\section{Product\_Type} + +Types @{typ unit} and @{text"\"}. + +\begin{supertabular}{@ {} l @ {~::~} l @ {}} +@{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\ +@{const Pair} & @{typeof Pair}\\ +@{const fst} & @{typeof fst}\\ +@{const snd} & @{typeof snd}\\ +@{const split} & @{typeof split}\\ +@{const curry} & @{typeof curry}\\ +@{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\('a\'b set)\('a*'b)set"}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}} +@{term"Pair a b"} & @{term[source]"Pair a b"}\\ +@{term"split (\x y. t)"} & @{term[source]"split (\x y. t)"}\\ +@{term"A <*> B"} & @{text"Sigma A (\\<^raw:\_>. B)"} & (\verb$<*>$) +\end{tabular} + +Pairs may be nested. Nesting to the right is printed as a tuple, +e.g.\ \mbox{@{term"(a,b,c)"}} is really \mbox{@{text"(a, (b, c))"}.} +Pattern matching with pairs and tuples extends to all binders, +e.g.\ \mbox{@{prop"ALL (x,y):A. P"},} @{term"{(x,y). P}"}, etc. + + +\section{Relation} + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \ ('b*'a)set"}\\ +@{const Relation.relcomp} & @{term_type_only Relation.relcomp "('a*'b)set\('b*'c)set\('a*'c)set"}\\ +@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\'a set\'b set"}\\ +@{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\('b\'a)\('b*'b)set"}\\ +@{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\('a*'a)set"}\\ +@{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\ +@{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\'a set"}\\ +@{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\'b set"}\\ +@{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\'a set"}\\ +@{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\('a*'a)set\bool"}\\ +@{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\bool"}\\ +@{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\bool"}\\ +@{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\bool"}\\ +@{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\bool"}\\ +@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\bool"}\\ +@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\('a*'a)set\bool"}\\ +@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\bool"}\\ +\end{tabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}} +@{term"converse r"} & @{term[source]"converse r"} & (\verb$^-1$) +\end{tabular} +\medskip + +\noindent +Type synonym \ @{typ"'a rel"} @{text"="} @{expanded_typ "'a rel"} + +\section{Equiv\_Relations} + +\begin{supertabular}{@ {} l @ {~::~} l @ {}} +@{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \ ('a*'a)set\bool"}\\ +@{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \ ('a \ 'a) set \ 'a set set"}\\ +@{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\('a\'b)\bool"}\\ +@{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\('b*'b)set\('a\'b\'c)\bool"}\\ +%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{term"congruent r f"} & @{term[source]"congruent r f"}\\ +@{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\ +\end{tabular} + + +\section{Transitive\_Closure} + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\('a*'a)set"}\\ +@{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\('a*'a)set"}\\ +@{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\('a*'a)set"}\\ +@{const Transitive_Closure.acyclic} & @{term_type_only Transitive_Closure.acyclic "('a*'a)set\bool"}\\ +@{const compower} & @{term_type_only "op ^^ :: ('a*'a)set\nat\('a*'a)set" "('a*'a)set\nat\('a*'a)set"}\\ +\end{tabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}} +@{term"rtrancl r"} & @{term[source]"rtrancl r"} & (\verb$^*$)\\ +@{term"trancl r"} & @{term[source]"trancl r"} & (\verb$^+$)\\ +@{term"reflcl r"} & @{term[source]"reflcl r"} & (\verb$^=$) +\end{tabular} + + +\section{Algebra} + +Theories @{theory Groups}, @{theory Rings}, @{theory Fields} and @{theory +Divides} define a large collection of classes describing common algebraic +structures from semigroups up to fields. Everything is done in terms of +overloaded operators: + +\begin{supertabular}{@ {} l @ {~::~} l l @ {}} +@{text "0"} & @{typeof zero}\\ +@{text "1"} & @{typeof one}\\ +@{const plus} & @{typeof plus}\\ +@{const minus} & @{typeof minus}\\ +@{const uminus} & @{typeof uminus} & (\verb$-$)\\ +@{const times} & @{typeof times}\\ +@{const inverse} & @{typeof inverse}\\ +@{const divide} & @{typeof divide}\\ +@{const abs} & @{typeof abs}\\ +@{const sgn} & @{typeof sgn}\\ +@{const dvd_class.dvd} & @{typeof "dvd_class.dvd"}\\ +@{const div_class.div} & @{typeof "div_class.div"}\\ +@{const div_class.mod} & @{typeof "div_class.mod"}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{term"abs x"} & @{term[source]"abs x"} +\end{tabular} + + +\section{Nat} + +@{datatype nat} +\bigskip + +\begin{tabular}{@ {} lllllll @ {}} +@{term "op + :: nat \ nat \ nat"} & +@{term "op - :: nat \ nat \ nat"} & +@{term "op * :: nat \ nat \ nat"} & +@{term "op ^ :: nat \ nat \ nat"} & +@{term "op div :: nat \ nat \ nat"}& +@{term "op mod :: nat \ nat \ nat"}& +@{term "op dvd :: nat \ nat \ bool"}\\ +@{term "op \ :: nat \ nat \ bool"} & +@{term "op < :: nat \ nat \ bool"} & +@{term "min :: nat \ nat \ nat"} & +@{term "max :: nat \ nat \ nat"} & +@{term "Min :: nat set \ nat"} & +@{term "Max :: nat set \ nat"}\\ +\end{tabular} + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Nat.of_nat} & @{typeof Nat.of_nat}\\ +@{term "op ^^ :: ('a \ 'a) \ nat \ 'a \ 'a"} & + @{term_type_only "op ^^ :: ('a \ 'a) \ nat \ 'a \ 'a" "('a \ 'a) \ nat \ 'a \ 'a"} +\end{tabular} + +\section{Int} + +Type @{typ int} +\bigskip + +\begin{tabular}{@ {} llllllll @ {}} +@{term "op + :: int \ int \ int"} & +@{term "op - :: int \ int \ int"} & +@{term "uminus :: int \ int"} & +@{term "op * :: int \ int \ int"} & +@{term "op ^ :: int \ nat \ int"} & +@{term "op div :: int \ int \ int"}& +@{term "op mod :: int \ int \ int"}& +@{term "op dvd :: int \ int \ bool"}\\ +@{term "op \ :: int \ int \ bool"} & +@{term "op < :: int \ int \ bool"} & +@{term "min :: int \ int \ int"} & +@{term "max :: int \ int \ int"} & +@{term "Min :: int set \ int"} & +@{term "Max :: int set \ int"}\\ +@{term "abs :: int \ int"} & +@{term "sgn :: int \ int"}\\ +\end{tabular} + +\begin{tabular}{@ {} l @ {~::~} l l @ {}} +@{const Int.nat} & @{typeof Int.nat}\\ +@{const Int.of_int} & @{typeof Int.of_int}\\ +@{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"} & (\verb$Ints$) +\end{tabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{term"of_nat::nat\int"} & @{term[source]"of_nat"}\\ +\end{tabular} + + +\section{Finite\_Set} + + +\begin{supertabular}{@ {} l @ {~::~} l @ {}} +@{const Finite_Set.finite} & @{term_type_only Finite_Set.finite "'a set\bool"}\\ +@{const Finite_Set.card} & @{term_type_only Finite_Set.card "'a set => nat"}\\ +@{const Finite_Set.fold} & @{term_type_only Finite_Set.fold "('a \ 'b \ 'b) \ 'b \ 'a set \ 'b"}\\ +@{const Finite_Set.fold_image} & @{typ "('b \ 'b \ 'b) \ ('a \ 'b) \ 'b \ 'a set \ 'b"}\\ +@{const Big_Operators.setsum} & @{term_type_only Big_Operators.setsum "('a => 'b) => 'a set => 'b::comm_monoid_add"}\\ +@{const Big_Operators.setprod} & @{term_type_only Big_Operators.setprod "('a => 'b) => 'a set => 'b::comm_monoid_mult"}\\ +\end{supertabular} + + +\subsubsection*{Syntax} + +\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}} +@{term"setsum (%x. x) A"} & @{term[source]"setsum (\x. x) A"} & (\verb$SUM$)\\ +@{term"setsum (%x. t) A"} & @{term[source]"setsum (\x. t) A"}\\ +@{term[source]"\x|P. t"} & @{term"\x|P. t"}\\ +\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\"} instead of @{text"\"}} & (\verb$PROD$)\\ +\end{supertabular} + + +\section{Wellfounded} + +\begin{supertabular}{@ {} l @ {~::~} l @ {}} +@{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\bool"}\\ +@{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\'a set"}\\ +@{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\nat)\('a*'a)set"}\\ +@{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\('b*'b)set\(('a*'b)*('a*'b))set"}\\ +@{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\nat)\('a*'a)set\('a*'a)set"}\\ +@{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\ +@{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\ +\end{supertabular} + + +\section{SetInterval} + +\begin{supertabular}{@ {} l @ {~::~} l @ {}} +@{const lessThan} & @{term_type_only lessThan "'a::ord \ 'a set"}\\ +@{const atMost} & @{term_type_only atMost "'a::ord \ 'a set"}\\ +@{const greaterThan} & @{term_type_only greaterThan "'a::ord \ 'a set"}\\ +@{const atLeast} & @{term_type_only atLeast "'a::ord \ 'a set"}\\ +@{const greaterThanLessThan} & @{term_type_only greaterThanLessThan "'a::ord \ 'a \ 'a set"}\\ +@{const atLeastLessThan} & @{term_type_only atLeastLessThan "'a::ord \ 'a \ 'a set"}\\ +@{const greaterThanAtMost} & @{term_type_only greaterThanAtMost "'a::ord \ 'a \ 'a set"}\\ +@{const atLeastAtMost} & @{term_type_only atLeastAtMost "'a::ord \ 'a \ 'a set"}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{term "lessThan y"} & @{term[source] "lessThan y"}\\ +@{term "atMost y"} & @{term[source] "atMost y"}\\ +@{term "greaterThan x"} & @{term[source] "greaterThan x"}\\ +@{term "atLeast x"} & @{term[source] "atLeast x"}\\ +@{term "greaterThanLessThan x y"} & @{term[source] "greaterThanLessThan x y"}\\ +@{term "atLeastLessThan x y"} & @{term[source] "atLeastLessThan x y"}\\ +@{term "greaterThanAtMost x y"} & @{term[source] "greaterThanAtMost x y"}\\ +@{term "atLeastAtMost x y"} & @{term[source] "atLeastAtMost x y"}\\ +@{term[mode=xsymbols] "UN i:{..n}. A"} & @{term[source] "\ i \ {..n}. A"}\\ +@{term[mode=xsymbols] "UN i:{.. i \ {.."} instead of @{text"\"}}\\ +@{term "setsum (%x. t) {a..b}"} & @{term[source] "setsum (\x. t) {a..b}"}\\ +@{term "setsum (%x. t) {a..x. t) {a..x. t) {..b}"}\\ +@{term "setsum (%x. t) {..x. t) {.."} instead of @{text"\"}}\\ +\end{supertabular} + + +\section{Power} + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Power.power} & @{typeof Power.power} +\end{tabular} + + +\section{Option} + +@{datatype option} +\bigskip + +\begin{tabular}{@ {} l @ {~::~} l @ {}} +@{const Option.the} & @{typeof Option.the}\\ +@{const Option.map} & @{typ[source]"('a \ 'b) \ 'a option \ 'b option"}\\ +@{const Option.set} & @{term_type_only Option.set "'a option \ 'a set"}\\ +@{const Option.bind} & @{term_type_only Option.bind "'a option \ ('a \ 'b option) \ 'b option"} +\end{tabular} + +\section{List} + +@{datatype list} +\bigskip + +\begin{supertabular}{@ {} l @ {~::~} l @ {}} +@{const List.append} & @{typeof List.append}\\ +@{const List.butlast} & @{typeof List.butlast}\\ +@{const List.concat} & @{typeof List.concat}\\ +@{const List.distinct} & @{typeof List.distinct}\\ +@{const List.drop} & @{typeof List.drop}\\ +@{const List.dropWhile} & @{typeof List.dropWhile}\\ +@{const List.filter} & @{typeof List.filter}\\ +@{const List.find} & @{typeof List.find}\\ +@{const List.fold} & @{typeof List.fold}\\ +@{const List.foldr} & @{typeof List.foldr}\\ +@{const List.foldl} & @{typeof List.foldl}\\ +@{const List.hd} & @{typeof List.hd}\\ +@{const List.last} & @{typeof List.last}\\ +@{const List.length} & @{typeof List.length}\\ +@{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\('a list * 'a list)set"}\\ +@{const List.lex} & @{term_type_only List.lex "('a*'a)set\('a list * 'a list)set"}\\ +@{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\nat\('a list * 'a list)set"}\\ +@{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\('a list * 'a list)set"}\\ +@{const List.listrel} & @{term_type_only List.listrel "('a*'b)set\('a list * 'b list)set"}\\ +@{const List.listrel1} & @{term_type_only List.listrel1 "('a*'a)set\('a list * 'a list)set"}\\ +@{const List.lists} & @{term_type_only List.lists "'a set\'a list set"}\\ +@{const List.listset} & @{term_type_only List.listset "'a set list \ 'a list set"}\\ +@{const List.listsum} & @{typeof List.listsum}\\ +@{const List.list_all2} & @{typeof List.list_all2}\\ +@{const List.list_update} & @{typeof List.list_update}\\ +@{const List.map} & @{typeof List.map}\\ +@{const List.measures} & @{term_type_only List.measures "('a\nat)list\('a*'a)set"}\\ +@{const List.nth} & @{typeof List.nth}\\ +@{const List.remdups} & @{typeof List.remdups}\\ +@{const List.removeAll} & @{typeof List.removeAll}\\ +@{const List.remove1} & @{typeof List.remove1}\\ +@{const List.replicate} & @{typeof List.replicate}\\ +@{const List.rev} & @{typeof List.rev}\\ +@{const List.rotate} & @{typeof List.rotate}\\ +@{const List.rotate1} & @{typeof List.rotate1}\\ +@{const List.set} & @{term_type_only List.set "'a list \ 'a set"}\\ +@{const List.sort} & @{typeof List.sort}\\ +@{const List.sorted} & @{typeof List.sorted}\\ +@{const List.splice} & @{typeof List.splice}\\ +@{const List.sublist} & @{typeof List.sublist}\\ +@{const List.take} & @{typeof List.take}\\ +@{const List.takeWhile} & @{typeof List.takeWhile}\\ +@{const List.tl} & @{typeof List.tl}\\ +@{const List.upt} & @{typeof List.upt}\\ +@{const List.upto} & @{typeof List.upto}\\ +@{const List.zip} & @{typeof List.zip}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{text"[x\<^isub>1,\,x\<^isub>n]"} & @{text"x\<^isub>1 # \ # x\<^isub>n # []"}\\ +@{term"[m.. xs]"} & @{term"map (%x. e) xs"}\\ +@{term"[x \ xs. b]"} & @{term[source]"filter (\x. b) xs"} \\ +@{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\ +@{term"\x\xs. e"} & @{term[source]"listsum (map (\x. e) xs)"}\\ +\end{supertabular} +\medskip + +List comprehension: @{text"[e. q\<^isub>1, \, q\<^isub>n]"} where each +qualifier @{text q\<^isub>i} is either a generator \mbox{@{text"pat \ e"}} or a +guard, i.e.\ boolean expression. + +\section{Map} + +Maps model partial functions and are often used as finite tables. However, +the domain of a map may be infinite. + +\begin{supertabular}{@ {} l @ {~::~} l @ {}} +@{const Map.empty} & @{typeof Map.empty}\\ +@{const Map.map_add} & @{typeof Map.map_add}\\ +@{const Map.map_comp} & @{typeof Map.map_comp}\\ +@{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\'b option)\'a set\('a\'b option)"}\\ +@{const Map.dom} & @{term_type_only Map.dom "('a\'b option)\'a set"}\\ +@{const Map.ran} & @{term_type_only Map.ran "('a\'b option)\'b set"}\\ +@{const Map.map_le} & @{typeof Map.map_le}\\ +@{const Map.map_of} & @{typeof Map.map_of}\\ +@{const Map.map_upds} & @{typeof Map.map_upds}\\ +\end{supertabular} + +\subsubsection*{Syntax} + +\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}} +@{term"Map.empty"} & @{term"\x. None"}\\ +@{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\ +@{text"m(x\<^isub>1\y\<^isub>1,\,x\<^isub>n\y\<^isub>n)"} & @{text[source]"m(x\<^isub>1\y\<^isub>1)\(x\<^isub>n\y\<^isub>n)"}\\ +@{text"[x\<^isub>1\y\<^isub>1,\,x\<^isub>n\y\<^isub>n]"} & @{text[source]"Map.empty(x\<^isub>1\y\<^isub>1,\,x\<^isub>n\y\<^isub>n)"}\\ +@{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\ +\end{tabular} + +*} +(*<*) +end +(*>*) \ No newline at end of file