diff -r 17256fe71aca -r ad73fb6144cf src/HOL/Hyperreal/HSeries.thy --- a/src/HOL/Hyperreal/HSeries.thy Tue Sep 06 23:14:10 2005 +0200 +++ b/src/HOL/Hyperreal/HSeries.thy Tue Sep 06 23:16:48 2005 +0200 @@ -14,8 +14,8 @@ constdefs sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal" "sumhr p == - (%(M,N,f). Abs_hypreal(\X \ Rep_hypnat(M). \Y \ Rep_hypnat(N). - hyprel ``{%n::nat. setsum f {X n..X \ Rep_hypnat(M). \Y \ Rep_hypnat(N). + starrel ``{%n::nat. setsum f {X n..real,real] => bool" (infixr "NSsums" 80) "f NSsums s == (%n. setsum f {0.. s" @@ -30,9 +30,9 @@ lemma sumhr: "sumhr(Abs_hypnat(hypnatrel``{%n. M n}), Abs_hypnat(hypnatrel``{%n. N n}), f) = - Abs_hypreal(hyprel `` {%n. setsum f {M n.. sumhr(0,n,f) + sumhr(n,p,f) = sumhr(0,p,f)" @@ -107,6 +107,7 @@ "sumhr(0, n, %i. r) = hypreal_of_hypnat n * hypreal_of_real r" apply (cases n) apply (simp add: sumhr hypnat_zero_def hypreal_of_real_def hypreal_of_hypnat + star_of_def star_n_def hypreal_mult real_of_nat_def) done @@ -139,7 +140,7 @@ lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, %i. 1) = omega - 1" by (simp add: hypnat_omega_def hypnat_zero_def omega_def hypreal_one_def - sumhr hypreal_diff real_of_nat_def) + sumhr hypreal_diff real_of_nat_def star_n_def) lemma sumhr_minus_one_realpow_zero [simp]: "sumhr(0, whn + whn, %i. (-1) ^ (i+1)) = 0" @@ -152,7 +153,7 @@ ==> sumhr(hypnat_of_nat m,hypnat_of_nat na,f) = (hypreal_of_nat (na - m) * hypreal_of_real r)" by(simp add: sumhr hypreal_of_nat_eq hypnat_of_nat_eq hypreal_of_real_def - real_of_nat_def hypreal_mult cong: setsum_ivl_cong) + real_of_nat_def star_of_def star_n_def hypreal_mult cong: setsum_ivl_cong) lemma starfunNat_sumr: "( *fNat* (%n. setsum f {0..