diff -r 17256fe71aca -r ad73fb6144cf src/HOL/Hyperreal/HyperNat.thy --- a/src/HOL/Hyperreal/HyperNat.thy Tue Sep 06 23:14:10 2005 +0200 +++ b/src/HOL/Hyperreal/HyperNat.thy Tue Sep 06 23:16:48 2005 +0200 @@ -692,24 +692,24 @@ constdefs hypreal_of_hypnat :: "hypnat => hypreal" "hypreal_of_hypnat N == - Abs_hypreal(\X \ Rep_hypnat(N). hyprel``{%n::nat. real (X n)})" + Abs_star(\X \ Rep_hypnat(N). starrel``{%n::nat. real (X n)})" lemma HNat_hypreal_of_nat [simp]: "hypreal_of_nat N \ Nats" by (simp add: hypreal_of_nat_def) (*WARNING: FRAGILE!*) -lemma lemma_hyprel_FUFN: - "(Ya \ hyprel ``{%n. f(n)}) = ({n. f n = Ya n} \ FreeUltrafilterNat)" +lemma lemma_starrel_FUFN: + "(Ya \ starrel ``{%n. f(n)}) = ({n. f n = Ya n} \ FreeUltrafilterNat)" by force lemma hypreal_of_hypnat: "hypreal_of_hypnat (Abs_hypnat(hypnatrel``{%n. X n})) = - Abs_hypreal(hyprel `` {%n. real (X n)})" + Abs_star(starrel `` {%n. real (X n)})" apply (simp add: hypreal_of_hypnat_def) -apply (rule_tac f = Abs_hypreal in arg_cong) +apply (rule_tac f = Abs_star in arg_cong) apply (auto elim: FreeUltrafilterNat_Int [THEN FreeUltrafilterNat_subset] - simp add: lemma_hyprel_FUFN) + simp add: lemma_starrel_FUFN) done lemma hypreal_of_hypnat_inject [simp]: @@ -756,7 +756,7 @@ apply (cases n) apply (auto simp add: hypreal_of_hypnat hypreal_inverse HNatInfinite_FreeUltrafilterNat_iff Infinitesimal_FreeUltrafilterNat_iff2) -apply (rule bexI, rule_tac [2] lemma_hyprel_refl, auto) +apply (rule bexI, rule_tac [2] lemma_starrel_refl, auto) apply (drule_tac x = "m + 1" in spec, ultra) done