diff -r 17256fe71aca -r ad73fb6144cf src/HOL/Hyperreal/NatStar.thy --- a/src/HOL/Hyperreal/NatStar.thy Tue Sep 06 23:14:10 2005 +0200 +++ b/src/HOL/Hyperreal/NatStar.thy Tue Sep 06 23:16:48 2005 +0200 @@ -33,12 +33,12 @@ starfunNat :: "(nat => real) => hypnat => hypreal" ("*fNat* _" [80] 80) - "*fNat* f == (%x. Abs_hypreal(\X\Rep_hypnat(x). hyprel``{%n. f (X n)}))" + "*fNat* f == (%x. Abs_star(\X\Rep_hypnat(x). starrel``{%n. f (X n)}))" starfunNat_n :: "(nat => (nat => real)) => hypnat => hypreal" ("*fNatn* _" [80] 80) "*fNatn* F == - (%x. Abs_hypreal(\X\Rep_hypnat(x). hyprel``{%n. (F n)(X n)}))" + (%x. Abs_star(\X\Rep_hypnat(x). starrel``{%n. (F n)(X n)}))" InternalNatFuns :: "(hypnat => hypreal) set" "InternalNatFuns == {X. \F. X = *fNatn* F}" @@ -194,9 +194,9 @@ (* f::nat=>real *) lemma starfunNat: "( *fNat* f) (Abs_hypnat(hypnatrel``{%n. X n})) = - Abs_hypreal(hyprel `` {%n. f (X n)})" + Abs_star(starrel `` {%n. f (X n)})" apply (simp add: starfunNat_def) -apply (rule arg_cong [where f = Abs_hypreal]) +apply (rule arg_cong [where f = Abs_star]) apply (auto, ultra) done @@ -287,7 +287,7 @@ lemma starfunNat_const_fun [simp]: "( *fNat* (%x. k)) z = hypreal_of_real k" apply (cases z) -apply (simp add: starfunNat hypreal_of_real_def) +apply (simp add: starfunNat hypreal_of_real_def star_of_def star_n_def) done lemma starfunNat2_const_fun [simp]: "( *fNat2* (%x. k)) z = hypnat_of_nat k" @@ -312,7 +312,7 @@ lemma starfunNat_eq [simp]: "( *fNat* f) (hypnat_of_nat a) = hypreal_of_real (f a)" -by (simp add: starfunNat hypnat_of_nat_eq hypreal_of_real_def) +by (simp add: starfunNat hypnat_of_nat_eq hypreal_of_real_def star_of_def star_n_def) lemma starfunNat2_eq [simp]: "( *fNat2* f) (hypnat_of_nat a) = hypnat_of_nat (f a)" @@ -362,7 +362,7 @@ lemma starfunNat_pow: "( *fNat* (%n. r ^ n)) N = (hypreal_of_real r) pow N" apply (cases N) -apply (simp add: hyperpow hypreal_of_real_def starfunNat) +apply (simp add: hyperpow hypreal_of_real_def star_of_def star_n_def starfunNat) done lemma starfunNat_pow2: @@ -372,7 +372,7 @@ done lemma starfun_pow: "( *f* (%r. r ^ n)) R = (R) pow hypnat_of_nat n" -apply (rule_tac z = R in eq_Abs_hypreal) +apply (rule_tac z = R in eq_Abs_star) apply (simp add: hyperpow starfun hypnat_of_nat_eq) done @@ -401,9 +401,9 @@ lemma starfunNat_n: "( *fNatn* f) (Abs_hypnat(hypnatrel``{%n. X n})) = - Abs_hypreal(hyprel `` {%n. f n (X n)})" + Abs_star(starrel `` {%n. f n (X n)})" apply (simp add: starfunNat_n_def) -apply (rule_tac f = Abs_hypreal in arg_cong, auto, ultra) +apply (rule_tac f = Abs_star in arg_cong, auto, ultra) done text{*Multiplication: @{text "( *fn) x ( *gn) = *(fn x gn)"}*} @@ -436,7 +436,7 @@ lemma starfunNat_n_const_fun [simp]: "( *fNatn* (%i x. k)) z = hypreal_of_real k" apply (cases z) -apply (simp add: starfunNat_n hypreal_of_real_def) +apply (simp add: starfunNat_n hypreal_of_real_def star_of_def star_n_def) done lemma starfunNat_n_minus: "- ( *fNatn* f) x = ( *fNatn* (%i x. - (f i) x)) x" @@ -445,7 +445,7 @@ done lemma starfunNat_n_eq [simp]: - "( *fNatn* f) (hypnat_of_nat n) = Abs_hypreal(hyprel `` {%i. f i n})" + "( *fNatn* f) (hypnat_of_nat n) = Abs_star(starrel `` {%i. f i n})" by (simp add: starfunNat_n hypnat_of_nat_eq) lemma starfun_eq_iff: "(( *fNat* f) = ( *fNat* g)) = (f = g)"